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Exoplanets are not smoothly distributed
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* Most prominent feature is a “pile-up” of ~Jupiter-mass planets
at ~|-2AU in single-planet systems (e.g.,Wright et al. 2009).

* We suggest that this is caused by migrating planets interacting
with the clearing protoplanetary disc.



Planet migration must be stopped

Planets migrate through their parent protoplanetary discs:

tmigration < Tdisc

If planets are to survive, migration must be slowed or
stopped.

Type | migration (low-mass
planets) can be halted or
reversed by local perturbations
in the disc structure.

Type |l migration (giant planets)
is driven by viscosity, and can
only be halted if the disc gas

is dispersed.

Armitage (2005)



Disc clearing is not scale-free

* Most plausible mechanism for final disc clearing is
photoevaporation.

* High-energy radiation (UV/X-rays) from central star heats
disc surface layers and drives a thermal wind.

Z 10 km/s flow

Hollenbach et al. (1994, 2000)




Disc clearing is not scale-free

Most plausible mechanism for final disc clearing is
photoevaporation.

High-energy radiation (UV/X-rays) from central star heats
disc surface layers and drives a thermal wind.

Wind has a characteristic radius:
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Photoevaporative winds now observed directly, through
blue-shifted forbidden lines ([Nell], etc.). Good agreement
with models (e.g., RDA 2008; Pascucci & Sterzik 2009;
Ercolano & Owen 2010; Pascucci et al. 201 |; see also talks

by Sacco, Rigliaco).



The model
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* (X-prescription for viscosity.

e Standard Type Il migration torque (Lin & Papaloizou 1986).

* Prescribed planetary accretion flow (Lubow & d’Angelo 2006).
 EUV photoevaporation (Hollenbach et al. 1994; RDA et al. 2006).



No planet — t=0.50Myr
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No planet — t=3.00Myr
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No planet — t=4.30Myr
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No planet — t=4.35Myr
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No planet — t=4.40Myr
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Planet Outside Gap — t=1.90Myr
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Planet Outside Gap — t=1.95Myr
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Planet Outside Gap — t=3.40Myr

0

VoY
N
-
O
(@)
N
N
S’
o
(@))
O




Planet Outside Gap — t=3.60Myr
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Planet Outside Gap — t=3.65Myr
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Planet Outside Gap — t=4.40Myr
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Planet Inside Gap — t=1.90Myr
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Planet Inside Gap — t=1.95Myr
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Planet Inside Gap — t=3.40Myr
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Planet Inside Gap — t=4.60Myr
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Planet Inside Gap — t=4.90Myr
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Planet Inside Gap — t=5.00Myr
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What happens near Rg?

Planets inside R; when the gap opens continue migrating
for a short time.

Planets outside Ry suppress accretion and can trigger disc
clearing, halting their migration.

Net effect is a desert (few planets) close to Rg, and pile-ups
(lots of planets) at smaller and larger radii.

Dynamics are non-linear, and very sensitive to migration
rate and efficiency of planetary accretion (both of which
depend on My).

Use Monte Carlo approach to make predictions: brute-
force integration of thousands of planet/disc models.



Distribution of planets: deserts & pile-ups

RDA & Pascucci (2012)

Standard Model

All planets
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* Deserts & pile-ups appear at different locations for planets of
different masses.



Distribution of planets: deserts & pile-ups

RDA & Pascucci (2012)
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* We predict a pile-up for ~Jupiter-mass planets at ~1-2AU. A
similar feature is seen in RV survey data (Wright et al. 2009).

* The observed exoplanet distribution can be used as a diagnostic
of both disc clearing and planetary accretion.



Summary
Giant planet migration (Type ll) is halted by disc
dispersal.

Disc clearing by photoevaporation has a characteristic
radius.

Migration is altered close to this radius, when planets
encounter the gap in the clearing disc.

This creates deserts and pile-ups in the exoplanet
distribution at ~AU radii.

Tentative agreement with current data...



