

Uranus & Neptune: Formation, Evolution, and Interior Structure in Solar and Exrasolar Systems

Ravit Helled Tel-Aviv University Sep. 7 2012

Solar and Extrasolar Planets

- Our goal: improve our understanding of low-mass planets
- Why? (1) Planetary interiors are the key for understanding the formation of planetary systems. (2) Planetary composition teaches us about the physical properties of the solar nebula.

Uranus and Neptune are the

Super-Earths/Mini-Neptunes of the Solar System

Observational Constraints for Interior Modeling:

- Mass
- Radius (usually equatorial)
- Angular velocity ω
- Gravitational Moments (up to J₆)
- 1 bar Temperature
- He/H ratio in the atmosphere

• What about magnetic field, moment of inertia, shape?

The external gravitational potential of a planet

$$U = \frac{GM}{r} \left(1 - \sum_{n=1}^{\infty} \left(\frac{a}{r} \right)^{2n} \mathcal{J}_{2n} \mathcal{P}_{2n} \left(\cos \theta \right) \right) + \frac{1}{2} \omega^2 r^2 \sin^2 \theta.$$

with GM and $J_{2n} \rightarrow$ constrain the interior density:

$$M = \iiint \rho(r,\theta) d^{3}\tau,$$

$$J_{2i} = -\frac{1}{MR_{eq}^{2i}} \iiint \rho(r,\theta) r^{2i} P_{2i}(\cos\theta) d^{3}\tau,$$

 $d\tau$ is a volume element - the integrals are performed over the entire planetary volume

Uranus and Neptune the "Icy (?) Planets"

Uranus: $14.5 M_{\oplus}$ @ 19.2 AU Neptune: 17.1 M_{\oplus} @ 30 AU

"Standard" Composition: rocks, ices, and H/He atmosphere

<u>Similarities</u>: Mass, Radius, Rotation, Radial Distance

<u>*Differences:*</u> Heat Flux, Atmospheric Enrichment, Tilt, Satellite System

Uranus and Neptune

For Uranus and Neptune only J_2 and J_4 are available

- Standard models:
 - Inner region: rocky core ~ 25%
 - Ices (mostly H_2O) ~ 60-70%
 - *H* and *He* atmosphere ~ 5-15%

A large range of possible internal structures \rightarrow composition is unknown

Uranus and Neptune

The gravity data is *insufficient* to constrain the planetary composition

Helled et al., 2011, ApJ, 726, 15

Reasons to believe they have water:

(1) Magnetic fields – *is it really?*

(2) Water is abundant at these distances – what about Pluto?

The Rotation Periods of Uranus and Neptune

- What are the rotation periods of Uranus and Neptune?
 - Complex multipolar nature of magnetic fields
 - Where are the magnetic fields generated?

Rotation period is important because it is used by interior models

Zonal wind velocities for geoids and solid body rotation rates that minimize the dynamical heights and modified shapes U: 17.24h → 16.58h; N: 16.11h → 17.46hs

Uranus: P ~ 16.58h (V: 17.24h)

Neptune: P ~ 17.46h (V: 16.11h)

Helled et al., 2010, Icarus, 210, 446

Interior models

black/gray lines -Voyager rotation periods blue/turquoise lines - modified rotation periods (Helled et al., 2010)

Mass fraction of metals in the outer envelope (Z_1) and in the inner envelope (Z_2) 3-layer models of Uranus and Neptune Nettelmann, Helled, Fortney, Redmer, PSS, 2012

Interior models with modified rotation

black/gray lines -Voyager rotation periods blue/turquoise lines - modified rotation periods (Helled et al., 2010)

Mass fraction of metals in the outer envelope (Z_1) and in the inner envelope (Z_2) 3-layer models of Uranus and Neptune Nettelmann, Helled, Fortney, Redmer, PSS, 2012

Interior models with modified rotation

Mass fraction of metals in the outer envelope (Z_1) and in the inner envelope (Z_2) 3-layer models of Uranus and Neptune Nettelmann, Helled, Fortney, Redmer, PSS, 2012

Giant impacts: tilt and internal flux

 Uranus is tilted and has very low internal flux – are these two connected??

Neptune: Radial Collision

Enough energy to mix the Core: Mixed and adiabatic interior, efficient cooling

Podolak & Helled, 2012, ApJL, in press

Uranus: Oblique Collision

Angular momentum deposition: Core, convection is inhibited \rightarrow slow cooling, tilt

Uranus and Neptune

- What are Uranus and Neptune made of? Are they Icy? Can we neglect planetary evolution (e.g., mixing, impacts)?
- What can we really say about low-mass exoplanets? Is it reasonable to assume adiabaticity?

Stop scaling our solar system planets!

Thank you!