Comets - Key Witnesses of the Beginning

Horst Uwe Keller

Institute for Geophysics and Extraterrestrial Physics University Braunschweig

Bodies in the Solar System

Conventional Concepts

- Comets were formed in the giant planets region (HTC and LPC) and beyond Neptune (JFC) and are stored in the Scatterd Disk (JFC) and Oort Cloud (HTC and LPC)
- Temperature: T < 50 K
- Agglomeration of cometesimals with low relative velocities (< 50 m/s)
 - Temperature increase during collision moderate ($\Delta T \approx 10 \text{ K}$)
 - gravitational heating negligible

Composition of Comets

- Comets formed beyond the water "snow line"
- Little heating during formation
- Little change over the age of the solar system
- High content of volatiles (H₂O) and complex compounds
- Similarity to interstellar medium
- Seemingly pristine but also refractory material (Star Dust)
- Where were comets (JFC, HTC, LPC) formed?
- Do their compositions (here HDO, CO₂, CO) vary with type?

D/H ratio in the water of comets

Bockelee-Morvan et al. (2012) influence of time and location on isotopic abundance distribution Giants Kuiper belt R < 20 AU</td> R > 30 AU

D/H in LPC vs. JFC

- Generally assumed that D/H ratio increases with heliocentric distance
- Herschel JFC observation (Hartogh et al. (2011)):
 - JFC were <u>not</u> formed further from the sun than LPC (contradiction to classical view)

or

- Assumption of D/H dependence on r_h is wrong
- Herschel C/2009 P1 (Garradd) observation (Bocklee-Morvan et al. (2012)):
 - Single archetypal D/H value for LPC not anymore tenable (also reavaluated 1P/Halley results)

LPC and JFC may originate from overlapping regions

CO and CO₂

- CO and CO₂ most abundant molecules
- Hardly any CO₂ in gas phase (sublimation from icy grains)
 - Formation on grains from CO (combining with OH)
- CO₂ formed by destruction of CO (ice)
- Hence temperature in the protoplanetary disk has to be low (< 30 K). Trapping of CO by water at higher T possible

Snow lines and T in early protoplanetary disk

- Snow lines moved during the first 10⁶y following e. g. the models of Dodson-Robinson et al. (2009):
- H₂O from 5 to 2 AU
- CO from 12 to 8 AU
- CO₂ in between

Production rates

- Abundances and ratios of H₂O, CO₂, and CO should tell about the formation regions of comets
- Unfortunately CO (mainly in UV) and CO₂ (IR) are difficult to observe simultaneously
- Compilation of production rates of H₂O (OH), CO₂, and CO of 30 comets at r_h < 2.5 AU
- Triggered by AKARI observations (Ootsubo et al. 2012)
- Strong caveat: still small statistics

Production of CO and CO₂, as a fraction of production of H₂O, shown as a function of original reciprocal semimajor axis for LPCs. The initial, reciprocal, semimajor axis has units of 10⁻⁶ AU⁻¹. Comets arriving for the first time from the Oort cloud appear to the left at values < 2

No evolutionary effects within the poor statistics

Production of CO and CO₂, as a fraction of production of H₂O, shown as a function of perihelion distance. Different symbols indicate periodic (including both JFCs and HTCs) and nonperiodic comets

CO and CO₂ uncorrelated with dynamical comet family

Relative abundance of CO as a function of relative abundance of CO₂

Ratio of CO/CO_2 as a function of relative abundance of CO_2

No correlation is seen in either plot No correlation with dynamical family

Ratio of abundances, CO/CO_2 , as a function of total inorganic carbon (assumed entirely to be CO plus CO_2)

 CO/CO_2 uncorrelated with dynamical comet family CO/CO_2 ratio less variable than CO or CO_2

Suggestions and Conclusions

- The dominant variable controlling CO and CO₂ fractional abundances is the total inorganic carbon in ices, with the conversion of CO to CO₂ reaching an equilibrium state in the protoplanetary disk
- This is consistent with variable condensation of CO followed by conversion to an equilibrium with CO₂
- Comets formed near the snow line of CO, possibly straddling it, around 8 to 12 AU and beyond (depending on the protoplanetary model)

Summary and Conclusions

- D/H ratio varies in comets (also within LPC)
- D/H ratio of JFC does not fit conventional models of separate regions of formation
- H₂O, CO₂, and CO show a wide range of abundances in all types of comets
- JFC, HTC, and LPC formed between the CO₂ and CO snow lines
- This explains the wide range of abundances relative to water and simultaneously a much smaller range of CO/CO₂ abundances