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● measurement of ξ as a function of x:

● (unknown)  expectation value of the
measurement:

● covariance matrix of the measurement:

(r = Pearson correlation)
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● knowledge of the complete covariance
needed to judge agreement between
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● knowledge of the complete covariance
needed to judge agreement between
models and data

● Which model can be ruled out?
(strong negative correlation)

→ model B
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Parameter inference:

● assume that the data vector

has as multivariate Gaussian distribution:

● neglect model parameters for which
the data would be unlikely, i.e. :

(Frequentist viewpoint)

ξ [π]
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Multi-probe 2-point analyses

lens galaxies
source galaxies

lensing kernel
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Multi-probe 2-point analyses Two point correlation functions:

● galaxy clustering:
(excess of galaxy pairs compared
to a random distribution)

● galaxy-galaxy lensing:
(tangential stretch of source images
around lens galaxies)

● cosmic shear:
(correlation of source galaxy
shapes caused by lensing through
matter inhomogeneities)
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Multi-probe 2-point analyses Two point correlation functions:

● galaxy clustering:
(excess of galaxy pairs compared
to a random distribution)

● galaxy-galaxy lensing:
(tangential stretch of source images
around lens galaxies)

● cosmic shear:
(correlation of source galaxy
shapes caused by lensing through
matter inhomogeneities)

Redshift tomography:

● split lens and source sample
into several redshift bin

● look at cross-correlation
functions



  

In our paper:

● DES weak lensing only:
450 data points

● DES multi-probe:
650 data points

● LSST weak lensing only:
2200 data points

→ Want to get estimates of these
     covariances from N-body
     simulations!

Why is this difficult?

We need the inverse covariance:
(the precision matrix)
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1.) Avoid matrix inversion with a priori knowledge
about the covariance

● true covariance:

● covariance estimate:

● model covariance:

● 'relative' deviation between
model and true covariance:

Precision matrix expansion:

● estimation of the first order term:

has noise

→ much less noisy than standard
    estimator
     (but bias due to finite break of
      the series)



  

2.) Use simulations only for the covariance parts
where you really need them

● constributions like shape-noise
can accurately be modelled analytically!

● Split covariance as

where 

         can be modelled accurately

and can be turned off in simulations

● let          be a model for       and

                                    the total model

www.jyi.org/

e.g.:                   shape-noise in
     weak lensing   

 =

http://www.jyi.org/
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where 
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● let          be a model for       and

                                    the total model

● Precision matrix expansion:

with
●

● estimation of the first order term:

→ noisy part of the estimator becomes
     even smaller



  

2.) Use simulations only for the covariance parts
where you really need them

● constributions like shape-noise
can accurately be modelled analytically!

● Split covariance as

where 

         can be modelled accurately

and can be turned off in simulations

● let          be a model for       and

                                    the total model

● Precision matrix expansion:

with
●

● estimation of the second order term:
(with help of Letac and Massam 2004)



  

Results and open questions

● Even strong deviations of our fiducial
covariance seems to yield a convergent
series

● For DES cosmic shear the PME needs
only 200 simulations to perform as the
standard estimator with > 8000 sims

● slightly worse performance for DES
multi-probe

● For LSST cosmic shear the PME needs
only 2200 simulations to perform as the
standard estimator with > 115.000 sims

● How do we know a priori, whether the
series converges?

● Can we make use of other noise terms
such as shot-noise?

● How do we account for the remaining
additional scatter in best-fit parameters?

Show paper!



  

Results from mock experiment:

● Use halo model covariance
by Krause & Eifler (2016) as 

● Deform it in different ways to
produce a fake model covariance

(through rescaling of some covariance
parts & more complicated procedures)

       Does the PME converge??
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Conclusions

● PME robust towards strong deviations
between model and N-body covariance

● for weak lensing only: excellent
recovery of parameter constraints

● for galaxy clustering:
still big improvement as opposed to
standard way to estimate precision
matrix 



  

What if the PME does not converge??
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