
VINE – A numerical code for simulating astrophysical systems

using particles II: Implementation and performance characteristics

Andrew F. Nelson1,2, M. Wetzstein3,4, and T. Naab4,5

andy.nelson@lanl.gov

ABSTRACT

We continue our presentation of VINE. In this paper, we begin with a description of relevant
architectural properties of the serial and shared memory parallel computers on which VINE is
intended to run, and describe their influences on the design of the code itself. We continue with
a detailed description of a number of optimizations made to the layout of the particle data in
memory and to our implementation of a binary tree used to access that data for use in gravita-
tional force calculations and searches for SPH neighbor particles. We describe the modifications
to the code necessary to obtain forces efficiently from special purpose ‘GRAPE’ hardware, the
interfaces required to allow transparent substitution of those forces in the code instead of those
obtained from the tree, and the modifications necessary to use both tree and GRAPE together
as a fused GRAPE/tree combination. We conclude with an extensive series of performance tests,
which demonstrate that the code can be run efficiently and without modification in serial on
small workstations or in parallel using the OpenMP compiler directives on large scale, shared
memory parallel machines. We analyze the effects of the code optimizations and estimate that
they improve its overall performance by more than an order of magnitude over that obtained by
many other tree codes. Scaled parallel performance of the gravity and SPH calculations, together
the most costly components of most simulations, is nearly linear up to at least 120 processors on
moderate sized test problems using the Origin 3000 architecture, and to the maximum machine
sizes available to us on several other architectures. At similar accuracy, performance of VINE,
used in GRAPE-tree mode, is approximately a factor two slower than that of VINE, used in
host-only mode. Further optimizations of the GRAPE/host communications could improve the
speed by as much as a factor of three, but have not yet been implemented in VINE. Finally, we
find that although parallel performance on small problems may reach a plateau beyond which
more processors bring no additional speedup, performance never decreases, a factor important
for running large simulations on many processors with individual time steps, where only a small
fraction of the total particles require updates at any given moment.

Subject headings: methods: numerical — methods: N-body simulations

1Los Alamos National Laboratory, HPC-5, MS B272,
Los Alamos, NM, 87545, USA

2UKAFF Fellow
3Department of Astrophysical Sciences, Princeton Uni-

versity, Princeton, NJ 08544, USA
4Universitäts-Sternwarte, Scheinerstr. 1, 81679

München, Germany
5Institute of Astronomy, Maddingley Road, Cambridge,

United Kingdom

1. Introduction

In a companion paper (Wetzstein, Nelson, &
Naab 2006, hereafter Vine1), we describe the
physics implemented in our numerical code, VINE,
the integrators used to evolve systems forward in
time, the implementation of hydrodynamics us-
ing SPH (Smoothed Particle Hydrodynamics), the
gravitational force solver and of the implementa-
tion of periodic boundaries. We also describe sev-

1



eral test problems on which we demonstrate the
code and its performance relative to the Gadget 2
code of Springel (2005). In this paper, we describe
our implementation of the techniques used to cal-
culate gravitational forces and determine neigh-
bors needed for SPH calculations. We also discuss
in detail the optimizations made to maximize the
code’s performance.

In order to maximize scientific productivity, a
numerical code must be able to perform simula-
tions with the lowest possible computational ex-
pense while still maintaining an accurate realiza-
tion of the evolution. The exact definition of an
‘accurate realization of the evolution’ will in gen-
eral be problem dependent: for one problem, one
technique might yield entirely acceptable results,
while for another it produces nonsense. VINE has
been designed to be both very flexible and very
modular, in order to allow the choices of specific
algorithms to be made by its users, rather than by
its writers. If one algorithm or setting turns out to
be inappropriate, another may easily be selected
or added to the code.

Of the two main components in the particles’
integration schemes, update and derivative calcu-
lation, the latter is by far the most computation-
ally expensive, but the former may have greater
influence on the total run time. For example, sta-
bility properties may require smaller time steps
be made with one integrator rather than another,
or one integrator may require more derivative cal-
culations per timestep than another. In Vine1,
we discussed the two integrators implemented in
VINE, each of which require different constraints
to obtain a given computational accuracy at a
given expense. We also described our implemen-
tation of an individual timestep scheme, by which
each particle can be evolved forward in time at
its own rate, greatly reducing the total computa-
tional expense when systems with large dynamical
ranges are modeled.

In this paper, we focus our attention on tech-
niques that can make derivative calculations more
efficient. Our purpose will be twofold. First,
we describe our implementation of a binary tree
based scheme for efficiently determining gravita-
tional forces on particles and lists of neighbors
particles for use in SPH calculations and the al-
ternative options we have implemented for using
special purpose hardware for those calculations if

it is available. Secondly, because efficient calcula-
tions require both efficient algorithms and efficient
implementation of those algorithms on computa-
tional hardware, we describe in some detail the
the low level optimizations we have implemented
to improve the performance of the code itself on
modern, microprocessor based computers. It is
our hope that in describing the optimizations in
detail, other users of VINE will come to under-
stand the principles important for obtaining good
performance, so that they are able to incorpo-
rate features of their own into VINE with com-
paratively little effort, and with equally optimized
performance. Alternatively, because we recognize
that some may have considerable investments in
their own codes, our descriptions may be of use in
making incremental modifications to those codes
that also improve performance.

We begin in section 2 with a discussion of the
properties of the computers on which we expect
that VINE will be used. In section 3 we describe
the construction of the binary tree used to or-
ganize particles so that calculations may be per-
formed efficiently on them. In section 4, we de-
scribe efficient methods for accessing the data in
the tree, and in section 5 we describe optimiza-
tions of the calculations themselves. Next, in sec-
tion 6 we finish the description of VINE with an
overview of the code itself and the hardware re-
quirements needed to run a simulation of a given
size. The overall performance of each of the four
major portions of the code that interact with the
tree is described in section 7, including a discus-
sion of parallel efficiency and tunable parameters
to increase performance. Finally, in section 8 we
summarize the features of VINE, suggest further
improvements that may be made to it and give a
web site where the code may be obtained electron-
ically.

2. Practical issues relevant for obtaining

good performance

Because efficient computation requires knowl-
edge of both the calculations being performed and
the machines on which they are performed, we de-
scribe here some of the more important properties
of the computers on which we expect this code to
be run, and the impact that their strengths and
limitations have for the design of the code.

2



We have designed VINE to run efficiently on mi-
croprocessors commonly used in workstations and
shared memory parallel computers. If available,
and at the user’s option, VINE can utilize special
purpose ‘GRAPE’ hardware to calculate mutual
gravitational forces of particles on each other. In
this section, we review some of the most signif-
icant architectural features of systems employing
such hardware, describing their strengths and lim-
itations. We will conclude by pointing out con-
straints that motivate some of the optimizations
in VINE.

2.1. Running simulations on one processor

Without question, the most important hard-
ware constraint we encounter in optimizing VINE
for fast performance is that imposed by memory
latency. As a class, all microprocessors share the
constraint that loading or storing a value to or
from memory is much more expensive than, for ex-
ample, adding them together. Depending on the
processor, a single calculation may take one or at
most a few clock cycles, and several calculations
may be processed at the same time on the same
processor. On the other hand, loading and stor-
ing may take as many as hundreds or thousands
of clock cycles. The universal solution has been
to incorporate relatively small caches of memory
into the processor itself, from which values can be
accessed very quickly, assuming that they are al-
ready present in the cache.

Typically, modern processors include two or
more levels of cache, labeled ‘L1’, ‘L2’ etc, which
are divided into a number of ‘lines’ and ‘sets’. The
L1 cache is the smallest and fastest and higher
cache levels are slower and larger. A cache line
consists of ∼ 32 − 128 bytes of memory and is
the smallest increment of information that can be
loaded into or stored from that cache at a time.
Even if a program requires only a single value from
a given range of memory, say a single integer (4
bytes) or a single double precision (8 bytes) real
value, that load also brings several additional, pos-
sibly unneeded values into the cache. Any given
address in main memory can be loaded into any
one of exactly ns lines, where ns is the number of
sets (the set ‘associativity’). Typically, ns ∼ 2−4.

For larger scale memory requirements, proces-
sors access a main memory, for which access times
are much longer. In practice, access to the en-

tire memory at one time does not occur because a
translation must be made between the virtual ad-
dress by which the program refers to some value
and the physical address at which that value is
actually stored. The processor holds a finite num-
ber of such translations to ‘pages’ of main mem-
ory which, depending on the system, may be as
small as 4 kB or as large as 32 MB and on some,
may even be selected at run time by the user for
a given job. The processor stores the address con-
versions for a number of virtual/physical pages
in a special cache called the ‘Translation Looka-
side Buffer’ (TLB). Accessing a value resident on
a page already mapped by the TLB, but not cur-
rently resident in cache may take as many as a few
hundred clock cycles, due to the slower speed of
main memory relative to the processor. Accessing
a value from a page not resident in the TLB re-
quires in addition that a new address translation
be calculated, replacing replace one of those cur-
rently in residence in the TLB. While some pro-
cessors have special circuitry to assist in the cal-
culation so that it adds only a small additional
delay, others require an intervention by the oper-
ating system, resulting in additional delays of a
few hundred cycles.

2.2. Running simulations with GRAPE

hardware

The most costly component of simulating any
system including self gravity is the calculation of
the mutual gravitational forces of particles on each
other. While costly, it is also simple to describe
and implement, and therefore lends itself to a spe-
cialized solution. Rather than perform the calcu-
lations on a general purpose processor used for all
the calculations, special-purpose processors called
GRAPE (for GRAvity PiPE) have been devel-
oped (see e.g. Sugimoto et al. 1990; Makino & Taiji
1998) to perform the gravity calculation instead.

Although GRAPE hardware can significantly
accelerate computation of gravitational interac-
tions, it cannot perform any of the other calcu-
lations required for the simulation to proceed. It
must therefore be attached to a general purpose
computer (the ‘host’) and data must be sent to it
for calculation, then results returned to the host
for use in the rest of the calculations. In some
circumstances, the data transfer time can in fact
be comparable to or greater than the calculation

3



time, due both to the actual transfer speed and to
latencies required to begin or complete each trans-
fer. An important example of such inefficiency will
be when only a few particles require force calcu-
lations, such as will occur when individual time
steps (see Vine1) are used in a simulation, or when
the interaction lists are relatively short, such as
will occur when the hardware is used in combina-
tion with a tree.

Another limitation of GRAPE systems is that
they implement a reduced precision internal nu-
merical representation, which constrains the dy-
namic range of the input data (particle masses
and positions) and increases the errors in forces
returned. GRAPE-3 (Okumura et al. 1993) for
example, produces errors of order of 2%, while
GRAPE-5 (Kawai et al. 2000) produces errors of
0.3%. On the other hand, even numbered revi-
sions, such as GRAPE-2 (Ito et al. 1991), GRAPE-
4 (Makino et al. 1997) and GRAPE-6 (Makino
et al. 2003), implement much higher internal pre-
cision numerical representations, and do not pro-
duce such large errors.

Because the errors in the reduced precision vari-
ants are uncorrelated, they do not impose prob-
lems for the time evolution of collisionless sim-
ulations (Makino et al. 1990), and may be used
without difficulty in models of such systems. On
the other hand, the high precision GRAPE vari-
ants may be used to model both collisionless and
collisional systems such as stellar clusters, where
individual particles in the simulation represent in-
dividual stars in the cluster.

So far, a number of simulations using GRAPE
processors in combination with the tree and indi-
vidual time steps have been performed using VINE
(Naab & Burkert 2003; Naab et al. 2006a; Bell
et al. 2006).

2.3. Running simulations on many proces-

sors in parallel

Even with the fastest processors available, the
time required to perform simulations of systems
at high resolution may exceed the time that the
scientist running the simulation can remain pa-
tient. Fortunately, the required work can be
shared among more than one processor so that
time required becomes much smaller, and parallel
computing architectures are commercially avail-

able at costs that make them affordable for use
in scientific research.

In the abstract, work required to complete a
given task must be divisible into sub-units that
are independent of all other such units in order
to run correctly in parallel, and those sub-units
must be parceled out to be run at the same time
on different processors. Data required to complete
the task must not be changed while any work re-
main incomplete and the relevant results of previ-
ous tasks must be communicated to different pro-
cessors, so that a single coherent picture of the en-
tire simulation exists at all times. In order to run
efficiently, the work units must be of similar size,
so that they can be divided evenly between all pro-
cessors and so that little time is wasted while some
processors sit idle and others complete dispropor-
tionate shares. Secondly, communication must be
fast, so that relatively little time is spent synchro-
nizing the results of different processors. Finally,
the amount of work that cannot be broken into
independent parts must be small.

For shared memory systems, partitioning natu-
rally occurs at a very low level in the code, often
at the level of individual loops themselves. An im-
portant factor limiting performance in this case is
that the work per loop iteration can be extremely
small, so that the overhead required to distribute
work among processors becomes significant. In
other cases, parallelizing loops at higher levels of
organizational structure may be possible, but will
not have identical quantities of work per iteration,
leading to load imbalance unless some intelligence
can be applied to parceling out each iteration.

Additionally, in large scale shared memory sys-
tems that employ so called Non-Uniform Memory
Architectures, or ‘NUMAs’, access times to main
memory are not the same for all locations, but in-
stead depend on where a particular value is stored
relative to the processor that attempts to load
it. For simple parallelized loops, such as those
used by the integrator to update particle data at
each timestep, a significant and otherwise hidden
source of load imbalance can originate from this
source. The same number of loop iterations, con-
taining identical mathematical operations, may re-
quire different amounts of time to complete when
run on different processors because data required
to complete one processor’s iterations are coinci-
dentally found closer to it than are the data re-

4



quired to complete some other processor’s itera-
tions.

2.4. Implications for designing efficient

numerical software

VINE has been developed for use on single and
multi-processor shared memory architectures us-
ing the OpenMP (Deagum & Menon 1999) suite
of compiler directives to share work among the
processors. In this section, we will therefore focus
on issues relevant for obtaining good serial and
parallel performance on shared memory architec-
tures. We note, however, that many of the issues
presented here are common to both shared and
distributed memory paradigms, and so many rec-
ommendations about optimization strategies will
apply to distributed memory parallelism as well.

Both on small scales and large, memory access
latencies dominate the list of performance con-
straints for large simulations. The two important
points to note are that first, accessing cached data
is very fast compared to accessing main memory
and second, that the caches are typically much
smaller than the total memory required for a typ-
ical simulation. This means that less immediately
needed quantities may be overwritten by loads of
other quantities if other calculations require them.
Information may need to be loaded into cache
from main memory many times if it is required
for many calculations. We are therefore well ad-
vised to reuse previously cached data to the fullest
extent possible before discarding it for other more
immediately useful data.

For example, we will often require a calculation
of the distance between two particles. In three
dimensions, such a calculation requires that six
quantities be loaded into the processor for calcu-
lation, consisting of the three spatial coordinates
of each particle. We might consider storing each
component of position in separate arrays, one for
each direction. However, this will inevitably lead
in practice to six costly loads from main mem-
ory for a single distance calculation. On the other
hand, with the discussion in section 2.1 in mind,
we know that a single load operation will load at
least four double precision values from main mem-
ory into the L1 cache. If we instead store parti-
cle positions in adjacent memory locations, then
all three coordinates can be loaded into the L1
cache with a single load from main memory, and

the second and third loads to the processor are
nearly cost free because they are already resident
in L1. In this context, a two dimensional array
with one dimension corresponding to the x, y or
z component of the position, and the other to the
specific particle, fits our requirements exactly if
we also take care to arrange that the ‘fast’ index
(which, because VINE is written in Fortran, will
be the first) defines the position components, and
the slow index defines the particle.

On a more general level, we will frequently re-
quire that the same values be accessed many times.
For example, spatially adjacent particles will have
nearly identical lists of neighbors for SPH calcu-
lations and nearly identical node interaction lists
for gravity calculations. All calculations involv-
ing those lists must load various quantities for
those particles or nodes many times. As Warren &
Salmon (1995) point out, if we can arrange so that
their data can remain in cache after their first load
from main memory, the calculations will proceed
much faster. Two optimizations are possible here.
First, if we can arrange that neighbor searches for
one particle, be immediately followed by neighbor
searches for a nearby particle so that the data for
their nearly identical neighbor lists (and prospec-
tive neighbors) are already in cache, then calcu-
lations using those data will proceed much faster
due to decreased load times. Second, if physically
nearby particles particles are also located nearby
in the system’s memory, then the correlated spa-
tial positions and memory locations ensure that
data are ordinarily found on the same set of phys-
ical pages in memory, so that many fewer TLB
misses result. In section 3.4, we describe how sort-
ing the particles and tree nodes accomplishes both
optimizations.

On still larger scales, tree traversals will span
huge ranges of physical memory, but access data
in that memory only sparsely and perform only
a small number of calculations per access. The
actual calculation of gravitational forces will
span similarly large ranges of memory, with only
slightly more calculations per access. For example,
a typical calculation of the gravitational force on
a particle in a simulation comparable to one of our
test simulations in section 7.1 below, will require
the summation of multipole moment contributions
from several hundred to several thousand nodes
and atoms, and require several times this many

5



nodes be examined for acceptability. Although
the quantity of data for these nodes is compara-
tively small, it is spread thinly over a volume of
memory that may be many gigabytes in size. As
a consequence, consecutive calculations will lose
all benefits from cache or TLB reuse even if done
for particles with identical interaction lists. The
size of an interaction list means that interaction
data near the beginning of a list will be evicted
from cache by data near the end of the list, requir-
ing that it be reloaded when the second particle’s
force is calculated. The same effect will occur in
the TLB, with address translations for later nodes
in the list evicting those that came earlier.

Two straightforward optimizations to the code
itself and a third hardware optimization both in-
crease the raw speed of the calculations and reduce
the impact of sparse memory access patterns sub-
stantially. First, sections 4.2 and 4.3 describe a
method for performing a single tree traversal for
groups of particles at the same time, reducing the
overall number of redundant accesses to tree data.
Second, section 5.1 describes a method for load-
ing small segments of the full interaction list data
into a small temporary array tuned to the size of
the L1 cache, which is then used for calculations
on many particles occur before being discarded in
favor of later nodes in the interaction list. Finally,
we utilize the option of using large hardware pages
on systems where they available and can be used
efficiently.

Sections 7.3.2, 7.3.3 and 7.3.4 describe the bene-
fits realized by each of the optimizations discussed
in this section on the gravity, SPH and tree build
calculations which are, respectively, the three most
costly operations in particle simulations. Each of
the memory management optimizations discussed
above will also act to avoid memory latencies in-
herent in NUMA systems as well, by concentrating
memory accesses in a small, moving footprint that
is accessed repeatedly. Therefore, optimizing the
code for high performance in serial mode will have
the additional benefit that parallel performance
may also benefit.

3. Building a tree: organizing particles for

efficient access

As we discussed in Vine1, lists of neighbor par-
ticles and approximate gravitational force compu-

tations can be obtained with the help of a tree
data structure to organize particles, so that groups
of particles that may potentially interact with an-
other may be qualified or disqualified with a single
calculation, using a node in the tree as an approx-
imate substitute for some large number of exact
interactions.

A variety of techniques for building and im-
plementing tree structures have been discussed in
the literature. One common technique (Barnes &
Hut 1986) builds the tree in a ‘top down’ fash-
ion by artificially tessellating space into succes-
sively smaller cubes. The first cube contains the
entire system of particles and if any cube contains
more than one particle, it is split into eight smaller
cubes of equal volume (hence the name oct-tree
for this type of tree structure). The procedure is
repeated until the cubes on the lowest level (the
leaves of the tree) contain either exactly one parti-
cle or no particle at all. Another technique (Press
1986; Jernigan & Porter 1989; Benz et al. 1990)
builds the tree from the ‘bottom up’ by associ-
ating mutual nearest neighbor particles or nodes
with each other as successively higher nodes in the
tree until only one node is left. Since exactly two
particles or nodes are grouped together, this type
of tree is commonly called binary tree.

In this section, we describe the construction of
the tree used in VINE. Because the details of the
tree structure itself will have a major effect on
the total run time of the rest of the code, we will
outline our tree construction and post processing
in some detail, although many aspects of it may
be found in the references above.

3.1. Tree construction

VINE implements a nearest neighbor binary
tree based on the algorithm described in Press
(1986) and Benz et al. (1990). A nearest neighbor
tree has the advantage that particles are naturally
grouped in the tree in the same manner that they
are grouped in space, rather than being grouped
into artificially bounded cubes in which particles
may be well separated in space but still found in
the same cube, or quite close but found in differ-
ent cubes. It is therefore a first step towards our
goal of performing neighbor searches for adjacent
particles at similar times during the full calcula-
tion in order to gain the advantages of cache reuse.
In order to ensure modularity and maximize the

6



efficiency of accessing the tree data, we imple-
ment completely independent data structures for
the tree and for the driver of the integration. The
first action of the tree build routine is therefore to
receive a list of positions, masses and smoothing
lengths (set to a fixed value for N -body particles)
from the driver and store them in dedicated mem-
ory local to the tree module, after which the actual
construction begins.

Construction depends upon the ability to ef-
ficiently determine the nearest neighbors of all
particles or nodes for which no nearest neighbor
has yet been found and to associate such pairs
into higher order nodes. We use a variant of the
method described by Benz et al. (1990) and, both
because their exposition was quite brief and to de-
scribe our modifications to it, we will describe the
tree build method in detail here.

Benz et al. (1990) employ a temporary hash
grid overlaid on the particle positions to associate
each particle with a specific grid zone. Then for
each zone, they define a linked list of particles
occupying that zone to determine suitably small
lists of candidate particles to examine for nearest
neighbor status. In spirit, this method is the same
as the so called ‘friends of friends’ method (Hock-
ney & Eastwood 1981), but employs a slightly
more sophisticated method for defining the hash
grid.

We create the hash grid by first sorting the
particles’ positions in each spatial dimension, d,
and then dividing the sorted lists into (Np/nh)1/d

equal length sections. The average of the coordi-
nates of the two particles on either side an adjoin-
ing section then defines the position of the bound-
ary for each zone in each direction. Thus, the grid
is unequally spaced in the positions of each grid
boundary, but equally spaced in number of parti-
cles per grid coordinate. The quantity nh defines
the expected average number of particles per zone.
Typically we find that an average of nh ∼ 3− 5 is
most computationally efficient, but the best hash-
ing factor also depends on the level of particle clus-
tering found in a given simulation.

After creating the grid, we assign a one dimen-
sional coordinate key to each particle, which de-
fines its position in the grid as

Kp = i + (j − 1)nx + (k − 1)nxny (1)

where i, j and k are the ordered triple defining a

particle’s position, and nx and ny are the num-
ber of hash grid zones in the x and y coordinate
dimensions of the grid. When 2D simulations are
performed, k = 1 so that the last term is always
zero. With a key in hand for each particle, a sin-
gle loop through the particle list is sufficient to
define a set of linked lists containing the particles
resident in each hash grid zone. Lists for each
zone are characterized by a ‘head-of-list’ node and
a zero terminated list of ‘next’ pointers, defining
the next node or particle in the list. Traversing the
list for a given grid zone is then equivalent to ac-
cessing a list of candidate particles within a small,
well defined region, as we require. The appropri-
ate list for any given particle is available directly
from examining its coordinate key, which identifies
the appropriate head of list node.

In order to determine nearest neighbor status
from the lists of candidates, we first determine dis-
tances to all candidates in a particle’s own zone
and the distance to the nearest zone boundary.
If any boundary is closer than the nearest neigh-
bor particle so far discovered, then the search re-
gion is expanded in the direction of the nearest
zone boundary. The search continues until the
nearest neighbor is closer than any zone bound-
ary. Once found, we store the nearest neighbor’s
identity and continue until we have determined the
nearest neighbors of all unassociated particles and
nodes.

After all of the nearest neighbors have been
found, we check each node for mutual nearest
neighbor status, defined by the condition that a
node’s nearest neighbor has that node as its own
nearest neighbor. If the condition fails, the node
remains on the unassociated node list until the
next round. If it succeeds, we create a new unasso-
ciated parent node from the pair and remove them
from the list of unassociated nodes. The sibling
pointer for each of its two children are updated to
point to each other, and a daughter pointer is de-
fined to point to one of the children, defining the
‘left’ child. Each pointer is an integer array whose
value contains the array index of the daughter or
sibling node (daughter pointers for particles are
set to zero). We calculate the mass of the new
node and its position is defined as the center of
mass of the two children.

The entire procedure is repeated with the re-
maining unassociated nodes until only one (the

7



‘root’ node) is left. When complete, the tree con-
sists of exactly 2Np − 1 nodes, of which Np corre-
spond to the original particles (‘atoms’).

3.2. Optimizations of the tree build

So far the tree construction algorithm is iden-
tical to that outlined in Benz et al. (1990). Here,
we introduce several optimizations of the original
method, which greatly accelerate the construction
over that required in the original method.

Using the recipe above, unassociated nodes are
examined and nearest neighbors found in an ar-
bitrary order, depending on their location in the
list given to the build. Instead, we recognize that
the candidate nearest neighbor examinations will
be most efficient if nodes that are spatially ad-
jacent are examined consecutively, so that their
data are already located in the cache. Therefore,
rather than directly looping over the list of nodes,
we loop over blocked sub-regions of our hash grid,
examining all nodes in each region before going
on to the next. This ordering ensures a high prob-
ability that recently examined nodes will still be
found in the cache when they are re-examined as
a prospective nearest neighbor for a nearby node.
In addition, newly created nodes will be placed in
nearby memory locations, increasing the benefits
of the correlations between memory and spatial
locations as the build proceeds to later iterations.

At each iteration of the tree construction, a new
grid is created, requiring that the positions of the
unassociated nodes be sorted in each direction. In-
stead of performing sorts at each level, we have
found that inserting the new nodes into the origi-
nal hash grid is a vastly less expensive alternative
because the position of the new node is already
known, so that its grid zone can immediately be
determined. To retain efficiency as the number
of nodes per zone decreases, we revise the hash
grid and the associated particle keys by cyclically
decreasing the number of zones in each of the co-
ordinate directions by a factor of two. Then the
number of zones examined for neighbor candidates
remains small, and the number of zones per dimen-
sion remains close.

After the first iteration, the linked lists contain-
ing unassociated nodes for each grid zone will con-
tain both newly created nodes and nodes for which
no associate could be found in any previous iter-

ation. Newly created nodes will be located at the
beginning of each list, while continuing unassoci-
ated nodes will be located at the end. In addition
to the head of list pointer for each zone, we also
define a head of list pointer for the old nodes on
the list, so that we can either traverse the full list
of new and old nodes for the zone, or only the new
nodes. Distinguishing between old and newly cre-
ated nodes is useful because no ‘old’ node will be
closer to a given node than the nearest neighbor
that has already been determined for it. We can
therefore reduce the search for nearest neighbors
at the next level to the list of newly created nodes
if the previously identified nearest neighbor also
remains unassociated. This optimization is espe-
cially beneficial and when the particle distribution
is very inhomogeneous, because in such cases rel-
atively fewer new nodes are created per level and
many redundant examinations can be avoided.

3.3. Parallelizing the tree build

Building the tree in parallel requires that the
work on each level of the construction be divided
into three distinct steps, each of which must be
completed before the next can begin. First, a near-
est neighbor must be assigned for each unassoci-
ated node and, second, mutual nearest neighbor
status must be determined for pairs of unassoci-
ated nodes and a new node created from each pair
and, third, newly created nodes must be placed in
the hash grid.

Distributing iterations of the loop over sub-
regions among processors is sufficient to parallelize
the work required in both of the first two steps. A
synchronization point is required between the two
steps however to ensure that all nearest neighbors
determinations have been made before any mu-
tual nearest neighbor determinations are made.
The distinction is necessary to eliminate a poten-
tial race condition that would otherwise exist in
the association. Without the synchronization, two
nodes residing in different sub-regions (and han-
dled by different processors) that are in fact mu-
tual nearest neighbors could be passed over be-
cause one of those nodes has simply not yet been
assigned any nearest neighbor at all.

As nodes are associated and created, they must
be placed in a specific memory location. An ad-
ditional synchronization is required in the form of
an atomic update to a counter that defines the lo-

8



cation of the last node already stored in memory.
Each processor increments the counter only one
time per level by an amount equal to the number
of nodes found in its part of the search. Contention
for access to the counter is therefore minimal.

The computational cost of setting up the ini-
tial hash grid is dominated almost entirely by the
cost of sorting the particle positions in each coordi-
nate direction. We have implemented the parallel
quick sort described by Sanders & Hansch (1997),
in which particle positions are divided into Nproc

segments, each of which is sorted on one proces-
sor, then merged with a series of log4(Nproc) merge
cycles to obtain the final, globally sorted list. Ac-
tual placement of particles in the hash grid has not
been parallelized because in the current version of
the code, we found actual performance loss rather
than gain. Revising the hash grid is parallelized
by partitioning the zones along one coordinate di-
mension among the processors, then re-associating
nodes in deleted zones with the newly revised grid.

3.4. Tree post processing: laying the

groundwork for efficient access

After the build is complete, we perform a num-
ber of post processing operations on the resulting
tree in order to prepare it for efficient access and
use. In considering what post processing will be
useful, we recall our requirement that tree traver-
sals for spatially nearby particles should occur con-
secutively. A list of nodes and particles sorted
according to the order they are encountered in
the tree traversal will satisfy this requirement but
presumes a tree traversal strategy, which we will
discuss in detail in section 4 below. For current
purposes, it is sufficient to note that our traver-
sal effectively converts the tree structure into an
ordered list of nodes and particles.

Minimally, this conversion requires that the
daughter and sibling pointers for each node be
reassociated into linked lists, which then define
the order nodes are encountered in a traversal. In
practice, only the right daughter nodes require re-
association if we generalize the definition of ‘sib-
ling’ for right daughter nodes to point instead to
its parent’s, grandparent’s (or great-grandparent’s
etc) sibling. For consistency, we define a fictitious
sibling of the root node, which also serves as the
sibling of all nodes on the extreme right branch of
the tree.

We extend the conversion process further by
actually reordering the placement of the data in
the computer’s memory as well, to correspond to
the order that data are encountered in a traver-
sal. Then the data for particles or nodes that are
nearby in physical space are stored in locations
that are nearby in the computer’s memory and re-
peated accesses become more efficient. Because
the particle data are copied into completely dis-
tinct memory locations for use in the tree, there
are actually two distinct sets of data that can be
reordered independently of each other. First, the
data defining the node information in the tree may
be reordered, so that calculations accessing the
tree are accelerated. Second, the data defining
the particles themselves may be reordered, so that
calculations that also (or only) access the particle
data may be accelerated.

Reordering the tree data requires that we per-
form a tree traversal (section 4.1 below) that opens
all nodes in succession to establish what the op-
timal ordering will actually be, and that we then
relocate each node in turn to correspond to that
ordering. During the traversal, we create a list of
nodes linking the consecutive ordering of the tree
traversal with the arbitrary ordering of the tree
as it was built. Each entry in the list then cor-
responds to a specific tree node and is thereafter
identified as such. Pointers to daughter and sibling
nodes are similarly identified and the associations
of the original ordering are updated to reflect the
re-identification.

In practice, we find that both associating the
original ordering to the revised ordering is needed,
and vice versa, so we create two reordering lists
corresponding to each case. We save these lists so
that when node data are revised (section 3.6), they
can be used to distribute the particle data into
optimal ordering for rapid traversals, at the cost
of a single copy of the particle data into the tree
data structures. Apart from the copy-in process
during the tree revision (which must be performed
whether or not the tree data are reordered), no
references to the auxiliary list are required and
there is no cost to the reordering.

Reordering the particle data also requires one
full traversal, in order to obtain a list of all par-
ticles only, ordered by their appearance in the
tree. Once obtained, the reordering requires only a
scratch array into which to copy the particle data,

9



then to restore it in the new ordering using the
list. Sections 7.3.3 and 7.3.4 describe the benefits
of reordering the particle data. The frequency of
reordering required to retain these speedups will
of course be very problem dependent, however we
have found for some typical problems that a fre-
quency of once every few tens to hundreds of time
steps is sufficient, so the cost of this reordering is
insignificant.

Finally, we create an ordered list of ‘clump’
nodes, which are defined by the condition that
each clump node contains Ncl or fewer particles,
but whose parent contains more than Ncl parti-
cles or is spatially separated from its sibling by
more than a critical distance (specified at run-
time). These clumps are used in the tree traversals
for the gravity and neighbor search calculations as
described in sections 4.2 and 4.3 below. Various
traversals used by the code require that clumps be
detected during the traversal so that they may be
set aside for special handling. In order to allow
detection both simply and inexpensively, we fur-
ther redefine the daughter and sibling pointers to
clump nodes to be negative valued integers. Their
absolute values are then the true array index of
the clump node. Comparison of the pointer to its
absolute value then determines a node’s status as
a clump or ordinary node.

Taken together, all of the post processing steps
described in this section require less than 5% of
the total time required for the tree construction
itself, and so are a small computational expense.
We shall show that even this small cost pays enor-
mous dividends when the tree is accessed as well,
making the added coding complexity also worth-
while. When complete, the tree consists of five in-
teger arrays, together with the twelve real valued
arrays containing the node position, mass and size
information, as well as their multipole moments,
defined in the next section.

3.5. Data contained in the tree and re-

quired by calculations

After construction, a number of other data re-
main to be calculated for each tree node, including
multipole moments and convergence radii needed
to determine their acceptability for use in various
calculations. We use the composition formulae
originally defined in Benz et al. (1990) to deter-
mine the mass, position and quadrupole moments

of each node, starting from the particle data only.
For a node, n, with daughters d1 and d2, these
formulae are respectively:

Mn = Md1 + Md2, (2)

Xn =
Md1Xd1 + Md2Xd2

Md1 + Md2

(3)

and

Qn = Qd1 + Qd2 +
Md1Md2

Md1 + Md2

×

(Xd1 − Xd2 ) ⊗ (Xd1 − Xd2 ). (4)

In addition, we require both the actual size of each
node and its multipole convergence radius. The
size of a node is conservatively specified by the
condition

hn = max(
Md1

Mn

|Xd2 − Xd1 | + hd2,

Md2

Mn

|Xd2 − Xd1 | + hd1). (5)

The size of individual particles is defined to be ei-
ther their smoothing length or the gravitational
softening parameter ǫ, in the case of N -body par-
ticles. Except for individual particles, the node
sizes computed using equation 5 is always larger
than strictly necessary, but we have found that
the computational cost of this conservative defini-
tion is not particularly large. An important ex-
ception is that we have found it advantageous to
specify the node size exactly for clumps and all of
their descendant nodes for use in the SPH neigh-
bor searches, because many fewer nodes must be
opened and examined. Therefore, for this subset
of nodes, we recalculate the size of node, n, as the
maximum distance of any particle, i, contained in
the node, from its center of mass:

hn = max
i

(|Xn − Xi | + hi). (6)

As described in Vine1 (section 4.2), VINE im-
plements three runtime selectable options, referred
to as ‘Multipole Acceptance Criteria’ or MACs,
for determining the acceptability of a given node
for use in the gravitational force calculation on
a particle. We refer to them as the ‘geometric’,
the ‘SW absolute error’ and the ‘Gadget’ MACs,
respectively. Each is based on a different imple-
mentation of the convergence radius of a multipole

10



expansion of the force from that node. One datum
for each node is required to implement each of the
three criteria and, depending on which criterion
was chosen by the user at runtime, VINE selects
which of the three data to calculate and store. In
each case, only the portion of the criterion that re-
mains invariant for all node examinations is stored
rather than the full MAC definition, in order to
minimize computational cost during tree traver-
sals. A user defined accuracy parameter, θ, is also
required to complete the specification of the crite-
rion, but takes on different interpretations for each
of the different MACs, as defined below.

When the geometric MAC is selected, VINE
stores the quantity

Rcrit =
hj

θ
(7)

for each node j, where θ is interpreted as a user
chosen, dimensionless value between zero and one,
parameterizing the minimum acceptable distance
at which a node may be used in the gravity cal-
culation. When the absolute error criterion of
Salmon & Warren (1994) (the ’SW’ MAC) is se-
lected, VINE stores the quantity:

Rcrit =

√

h2
j

4
+

√

3TrQj

θ
(8)

where in this case θ is a value defining the maxi-
mum absolute error in the acceleration that a sin-
gle node may contribute to the sum and Qj is the
quadrupole moment tensor for node j. Finally,
when the Gadget MAC of Springel et al. (2001) is
selected, VINE stores the quantity:

Φcrit =
Mjh

4
j

θ
, (9)

where the gravitational constant is set to G = 1
and we have replaced the variable Rcrit with Φcrit

in this definition to make clear the fact that the
saved portion of the criterion does not have units
of length. For the Gadget MAC, θ is interpreted
as the maximum magnitude of the relative error in
the force allowable to any single acceptable node.

To these, we add an additional criterion that we
will find useful, describing the condition that two
nodes are in physical contact, or in other words,
are ‘neighbors’:

r2
ij < (hi + hj)

2, (10)

where the nodes’ physical extents are given by hi

and hj , through either equation 5 or 6. Thus,
whether a node actually represents only one or
very many particles, the condition for tree nodes
to be neighbors is equivalent to the SPH condition
that defines neighbor status for individual parti-
cles (see Vine1, section 3.2).

3.6. Updating vs. rebuilding the tree

Even though the tree is a nearest neighbor tree,
none of the calculations using it require that the
nearest neighbor property be satisfied. Therefore
we may reuse it in future time steps as long as it
remains efficient to do so, revising only the quanti-
ties defined in section 3.5 and amortizing the cost
of its construction over many time steps. Section
7.3.5 illustrates the conditions that affect the fre-
quency of rebuilds, relative to revisions.

As for the build, when data in the tree are up-
dated, particle data are received from the calling
routine and stored (in the sorted tree ordering)
in dedicated, locally defined arrays. Node data
are created from the node composition formulae
above, with quadrupole moments for particles set
to zero. Given these formulae, a necessary con-
dition for creating or updating information for a
given node is that all its descendant nodes have
been already been updated, and leads naturally
from the bottom to top (leaf nodes to root node)
update suggested by Hernquist (1990b). We have
not found this method to be efficient however, ei-
ther for updates on a single processor or in parallel,
because the work per level is small and the data
are widely scattered in memory.

Instead we take notice of the fact that the node
reordering done to improve performance of the
tree traversals can also be used for the tree up-
dates, when used in reverse. In other words, while
a tree traversal that starts from the root and opens
every node in turn is guaranteed to examine ev-
ery parent node before its children, a tree traver-
sal that starts from the tree’s termination node
and proceeds towards the root is guaranteed to
examine every child node before its parent. Struc-
tured in this way, a tree update requires a single,
long loop over all nodes, rather than many, shorter
loops over nodes on the same level. Updates for
spatially nearby nodes are performed naturally at
the same time, allowing substantial speedup due
to improved cache reuse. Updates in parallel are

11



done by splitting the tree into branches each con-
taining an approximately equal number of nodes,
to be handled separately by different processors,
and requires only a single synchronization point
at the end of the loop. A small number of isolated
nodes (typically ∼ 10) near the root of the tree
which cannot easily be associated with any sub
branch, are updated in a second, post processing
step.

4. Traversing the Tree

The ultimate goal of any simulation is to model
a physical system, so all calculations not leading
directly to that end are in some sense wasted. In
this context, and even though use of a tree will
be enormously beneficial compared to its alterna-
tives, both the processes of building a tree and
extracting data from it are wasted: neither is di-
rectly related to evolving any particles forward in
time or to calculating derivatives for any quantity
or particle. Therefore we are well advised to re-
duce, as far as possible, the time spent in such
activities.

Given a tree structure, what is the most efficient
way to determine which nodes in the tree are use-
ful as is and which must be refined further? A vari-
ety of tree traversal strategies have been discussed
in the literature (Barnes 1990; Makino 1990; Hern-
quist 1990b; Benz et al. 1990; Warren & Salmon
1995; Dubinski 1996) which are efficient for use on
various kinds of hardware, from vector based ma-
chines to single CPU microprocessor based ma-
chines, to shared or distributed memory parallel
architectures. VINE employs elements from sev-
eral of these methods to obtain various informa-
tion from the tree. In this section, we first ex-
amine a flexible prototype traversal and then de-
scribe adaptations of it, used to obtain a variety
of information from the tree required for the grav-
ity calculation and the neighbor determination for
SPH.

Throughout this discussion, we will refer to a
‘sink’ particle or node to be a point for which data
are required from the tree or interaction is to be
calculated. A ‘source’ particle or node is an entry
in the tree that is tested for or used to determine a
contribution to that interaction. In principle, the
tree could be traversed and interactions calculated
for any point in space, whether or not that point

is actually a node in the tree, however we have im-
plemented only traversals for nodes and particles
that are tree members.

4.1. A prototype tree traversal

Traversing a tree requires first, one or more
tests for each node that determine its acceptabil-
ity, second, a prescription for determining which
node will be the next to be examined, given the
outcome of the tests and, finally, a termination
condition for the traversal. Without reference
to gathering any particular information from the
tree, the results of a node examination fall into
three categories. A node may either pass or fail its
acceptability criterion, or we may defer examina-
tion until later based on some other, special prop-
erty of the node. VINE tests a tree node first for
its special properties, then for its acceptability, us-
ing the stackless ‘follow the left wall’ rule discussed
in Makino (1990). In practical effect, this traversal
amounts to a variant of the Peano-Hilbert or Mor-
ton ordering employed by grid based tree codes
(Springel et al. 2001; Warren & Salmon 1995), ap-
plicable instead to a nearest neighbor tree.

In a follow the left wall traversal the tree nodes
are converted into an ordered list, for which the
path of a traversal that opens every node in turn
will always take the leftmost branch of the tree
that has not already been examined. Accepting
a node and advancing to its sibling is therefore
equivalent to dropping some number (> 1) of en-
tries down the list, or exactly one if the node is an
atom. The implementation in VINE defines two
linked lists which contain respectively, the sibling
of the node and its left daughter. We general-
ize the definition of ‘sibling’ for right daughters
to include the parent’s or grandparent’s (or great-
grandparent’s etc) sibling, and we use a fictitious
node as the root node’s sibling. By extension, the
fictitious root sibling is therefore also the sibling of
all nodes on the extreme right branch of the tree.
Fortran pseudo code illustrating a traversal using
each of the three alternatives is shown here:

do while( not finished )

if( defer? )then

YES: store node on special treatment

list and advance to sibling

12



Tree Root

B

A

C

D

E

Termination
Fictitious

Node

Fig. 1.— Graphic description of the follow the left wall tree traversal used in VINE. The direction taken after
each node examination is shown with a solid arrow, while the discarded direction is shown with a dashed
arrow.

elseif( accept? )then

YES: store node on interaction list

and advance to sibling

else

NO: advance to left child

endif

enddo

Figure 1 shows an example traversal through
the tree structure under the assumption that the
‘special’ characteristic of a node is that it is a par-
ticle and the termination condition that the next
node to be tested is the fictitious node, so that we
traverse the entire tree. For the purposes of this
illustration, we do not need to specify the accep-
tance criterion.

Starting from the root node, we descend one
level to its left daughter node. The node does
not need to be deferred (i.e. it is not a parti-
cle) and we will assume that it is also not accept-
able, so control descends again to the left daugh-
ter node, labeled ‘A’. Here we will assume that
node A is acceptable, and we place it on an inter-

action list. Rather than descending further (the
dashed arrow), control passes instead to its sib-
ling, and upon failing the acceptability criterion
descends two levels until we reach node ‘B’, which
is a particle and therefore a decision regarding its
interaction can be deferred. It is placed on the de-
ferred interaction list, as is its sibling, and control
passes onwards to node C, which we will assume
is acceptable and place on the normal interaction
list. Note here that control would have passed
to the same node, labeled D, had any of the pre-
vious examinations of C’s parent nodes produced
an acceptable result, bypassing all examinations of
their daughter nodes. Continuing on, we examine
D and upon finding it unacceptable, pass control
to its daughter and eventually to node E, which we
place on the interaction list. Since the next node
examination is the fictitious termination sibling,
the traversal is complete.

In principle, one or more tests may be required
in any particular traversal to determine the node’s
special properties, its acceptability or the ‘not fin-
ished’ condition. The flexibility to choose different
criteria but keep the same basic traversal strategy
allows us to tailor tree traversals individually for
different requirements. Two examples of such flex-
ibility are important to point out for VINE users.

First, by changing the starting and termination

13



nodes, we may design a search to traverse all or
any part of the tree. For example, in the prototype
above, we traversed the entire tree starting from
the root using the condition that the last node to
be examined is a fictitious termination node. If
we had desired instead to search only some por-
tion of the tree, say all of the nodes and atoms
beneath node C, then we might choose arrival at
node D as our termination node and start the tree
traversal at node C. These partial traversals will
be important for the close portion of the traversal
for gravitational forces and for neighbor searches
in SPH calculations. Second, by changing the spe-
cial property, we can detect atoms very inexpen-
sively (i.e. as nodes with no children), or we can
detect ‘clumps’ as defined by the condition that
the (integer valued) pointer to the next node and
its absolute value are unequal. Later traversals of
the deferred nodes may use the same or entirely
different criteria from the full traversal used to ob-
tain them originally.

4.2. Finding acceptable nodes and atoms

for the gravity calculation

In order to determine lists of acceptable nodes
and atoms for gravity calculations, we must adapt
the prototype tree traversal above to the problem
at hand and specify acceptance criteria for a node
to be used. For the calculation to proceed quickly,
we would like to perform as few traversals as pos-
sible and accept the minimum number of nodes
necessary to produce accurate forces.

We address the first constraint by combining
our tree traversal with a variant of the procedure
of Barnes (1990), who showed that it was efficient
to perform a single tree traversal and obtain a sin-
gle list of acceptable nodes and atoms for groups of
nearby particles at the same time, rather than for
individual particles separately. Following this ob-
servation, we group nearby particles into ‘clumps’,
as defined in section 3.4, and divide each tree
traversal into two distinct steps corresponding, re-
spectively, to interactions with distant particles or
to close particles.

In the first step, VINE employs a single tree
traversal designed to obtain a list of nodes that
are certainly acceptable for all particles in the sink
clump using the user specified MAC, and a list of
neighbor clumps, defined as clumps which pass the
criterion in equation 10. In the second, VINE per-

forms individual traversals for each particle in the
sink clump, over the list of neighbor clumps. Iden-
tical acceptability criteria are used in both steps,
but the deferral and termination criteria are spe-
cific to each. We find that this division of work al-
lows the total number of traversals to be substan-
tially reduced, so that the fraction of time spent in
traversals is only ∼ 10− 20% of the total required
for the entire gravity calculation.

The far traversal uses each clump in the tree
in turn as the sink for the gravitational calcula-
tion. It extends from the root to the termina-
tion node and uses the deferral criterion that any
clump nodes found during the traversal are set
aside for later processing during the second step.
The node acceptability criterion results in a list of
all non-clump nodes encountered that are accept-
able for the gravity calculation for all particles in
the sink clump. It is impossible for a list of atoms
to be generated during this traversal because ev-
ery particle is a member of a clump and so is set
aside, so no other criterion is required to handle
them.

The close traversal step divides the sink clump
into individual sink particles in turn, and traver-
sals over every neighbor clump complete the inter-
action lists for each particle. The traversals pro-
ceed from each neighbor clump and terminate on
its sibling, with the special property set to deter-
mine whether the node under examination is ac-
tually a particle. They use the same acceptability
criterion as the far traversal, with an individual
particle now replacing a clump as the sink. Ac-
ceptable particles and nodes are placed on a list
of atoms or nodes as appropriate.

4.3. Finding neighbor particles for SPH

As for the gravity calculation, VINE’s search
for the neighbor particles required for SPH calcu-
lations uses a two step far/close traversal strategy.
In the far traversal, we obtain a list of all clumps
which are neighbors of our sink clump, in which all
possible neighbor particles will be found. In the
close traversals, we examine each neighbor clump
in turn for each active particle in our sink clump,
to obtain lists of actual neighbors. The condition
for acceptability as a neighbor in both the far and
close traversals is defined by the condition in equa-
tion 10 rather than a MAC, but the deferral con-
ditions are identical to those used for the gravity

14



calculations. In the far traversal, the deferral con-
dition is that a node is a neighbor clump, and in
the near traversal, that it is a particle. Nodes
meeting neither the deferral nor the acceptability
criteria are simply discarded.

Rather than using a variant of the template in
section 4.1 for the far traversal, we have found
instead that the traversal strategy of Hernquist
(1990b) is more efficient. The key reason for the
speedup is that this strategy allows VINE to retain
information from previous far traversals for use in
later ones. Data retention is useful in this case
because, with an appropriate choice of retained
data, a search for neighbors clumps over only a
very small subset of the tree will be required be-
cause the acceptability criterion is reversed rela-
tive to the gravity calculation. Data for distant
nodes is simply discarded.

The search proceeds as follows. Starting from
the highest level in the tree, corresponding to the
root, we take advantage of the fact that the accept-
ability criterion can be applied to any two nodes
in the tree to test the acceptability of nodes on
that level against our clump’s most distant ances-
tor node. If any node is acceptable (i.e. it and our
clump’s ancestor are neighbors according to equa-
tion 10, so that it potentially contains neighbors),
we store its children on a stack. Upon examination
of all nodes on that level, we proceed to the next,
where the process repeats, using the previously
stored potential neighbor nodes. The process re-
peats at each level, testing against the ancestor on
that level, defining a progressively more restricted
list of acceptable nodes in which neighbors are to
be found until no more nodes remain to be tested.
If a clump is found at any point in the process,
it is immediately placed on a stack defining possi-
ble neighbor clumps for further examination later,
rather than on the list of potential neighbor nodes.
Upon completion of one far traversal, we test all
clumps on this stack for neighbor status, return-
ing a list to be used in the second, close traversal
step.

This strategy means that later traversals done
for other source clumps need not begin at the tree
root, but only at some lower level ancestor node
defined by the condition that both the immedi-
ately prior traversal and the current one share it
as a common ancestor. Since we process the list
of clumps in order of their appearance in the tree,

consecutive traversals are also naturally grouped
by order in the tree. Therefore, in most cases, the
last common ancestor will often be only one or a
few levels higher in the tree, greatly restricting the
number of nodes remaining to be tested.

For each particle in the sink clump, the close
traversal step is performed on each neighbor
clump, and again uses a variant of our proto-
type. Each traversal begins at the neighbor clump
and terminates on its sibling. The acceptability
criterion is defined again by status as a neighbor
according to equation 10 and the deferral criterion
by the status condition that the node is a particle,
of the same species as the sink particle, i.e. both
source and sink particle must be either both SPH
or both N -body particles.

VINE recalculates neighbor lists each time they
are needed and therefore does not require a large
amount of additional memory be allocated to stor-
ing lists of every neighbor for every particle. In
principle, such redundant neighbor recalculation is
expensive and therefore to be avoided. However,
we estimate that 30-40% of each neighbor determi-
nation is spent actually calculating data required
for the SPH calculations themselves. To make
most efficient use of these calculations, the neigh-
bor search therefore returns not only the neighbor
identities but also the additional information used
in the SPH calculation. Specifically VINE returns
the mass, squared mutual smoothing length and
distance, as well as the components of the dis-
tance and the identity of each neighbor particle
are stored and returned to the driver SPH routine
for use in further calculations.

4.4. Parallelizing the traversals and their

associated calculations

Both tree traversals and the later calculations
using data derived from them are independent of
all similar traversals, and produce results that are
stored unique locations as well. Moreover, tree
traversals are ‘read only’ in the sense that they
do not require that data contained in the tree be
altered. The most natural parallelization strategy
will therefore be to define a loop over all clumps in
which one traversal and all associated calculations
are performed in each iteration. Then the work
can be parallelized by distributing different loop
iterations to different processors.

15



We have parallelized both the gravity and SPH
density and force calculations in this manner.
Each iteration of the loop first calls a routine re-
sponsible for the far traversal, then for the close
traversal and finally for the actual summation of
terms. Lists of acceptable nodes and atoms are
stored in data structures private to each processor.
Data describing the neighbors for each SPH parti-
cle are similarly defined privately for each proces-
sor.

In general, the time required to complete an it-
eration of the loop will neither be fixed nor can it
be determined easily from a count of the number
of particles in each clump. This is important be-
cause load imbalance between different processors
will develop if clumps handled by one processor
have systematically larger populations of active
particles than others, as will occur when individ-
ual particle time steps are used (see Vine1) and
active particles are distributed inhomogeneously
throughout the tree, or simply require additional
work to complete at a given accuracy. We might
expect that such effects would tend to average out
in large simulations and, indeed, to some extent
they do if a large enough fraction of particles are
active. We use the OpenMP ‘dynamic’ scheduling
option to improve upon this average and retain
load balance even when relatively few particles
are active. In contrast to the ‘simple’ scheduling
option where loop iterations are divided equally
among processors, this option divides iterations
into much smaller chunks, distributed to each pro-
cessor as they become idle, at the cost of some ad-
ditional parallel overhead time spent to effect the
distribution as the computation proceeds.

5. Gravity

In this section, we describe the options avail-
able in VINE to calculate the gravitational forces,
using either information obtained from the tree
traversals described in sections 4.2, a direct sum-
mation by either the processor or based on special
purpose ‘GRAPE’ hardware, or a combination of
both.

5.1. Forces obtained from the tree based

calculation

VINE computes accelerations for all active par-
ticles in a clump at one time, using identical in-

teraction lists for the far component of the traver-
sal but distinct close interaction lists. For suf-
ficiently large simulations (& a few ×105 parti-
cles), the interaction lists will typically contain a
few hundred to as many as several thousand en-
tries. Although the node data corresponding to
these entries may total only a few tens or hundreds
of kilobytes (quite small given the memory sizes
of today’s computers), it will certainly be much
larger than can be accommodated in the fastest
level of the computer’s cache hierarchy. More im-
portantly, it will sparsely sample a set of memory
locations spread out over many gigabytes of sys-
tem memory, with only one or at most a few entries
resident on any single page. As the summation for
each particle proceeds, data for each node must
be retrieved either from a page of main memory
or from secondary/tertiary caches, stored in pri-
mary cache and operated upon by the processor,
only to be evicted by later data in the interaction
list and retrieved again for the next particle, an ef-
fect known to computer scientists as cache or TLB
’thrashing’. We present in this section two opti-
mizations that substantially mitigate both sorts of
thrashing.

First, we note that our tree traversal is split into
two steps corresponding to far and near interac-
tions and that it produces identical node lists for
the far step. This means that an additional op-
timization, referred to by computer scientists as
cache blocking, can be made that largely elimi-
nates both types of thrashing. Specifically, we al-
locate a small array whose dimensions have been
chosen to be exactly the size of the L1 cache and
load a subset of the node data from our list into
this array. We then cycle through these data for
all of the particles in the clumps that require accel-
erations. When calculations for all particles have
been completed, we discard the subset and reload
the array with another subset of the nodes, repeat-
ing until the list has been fully exhausted. We
therefore avoid all TLB and cache thrashing ef-
fects during the computations, because the data
we require will always be accessed from an array
that is resident in the fastest level cache available,
from which it will not be evicted until it is no
longer needed and which requires only very small
number of TLB entries.

Although we will find that cache blocking is
highly effective in the force calculation itself, it can

16



do nothing for the tree traversals, from which the
node data are obtained because, by their nature,
they sparsely sample very large volumes of mem-
ory only once per traversal. Nearly every node
examination will then require a new TLB entry to
be calculated and one or more new cache lines to
be loaded. While few remedies may improve the
performance of the cache behavior, the effect of
TLB thrashing can be mitigated substantially on
hardware architectures for which large pages are
available and can be accessed easily by user pro-
grams. For a traversal of a tree of a given size, the
probability that two or more nodes examined dur-
ing the traversal will be found on a single page will
be higher if the page size itself is larger, so that
fewer are required to span the entire data set defin-
ing the tree, and fewer TLB recalculations must
be made. The magnitude of the mitigation will
be dependent on the cost for a TLB recalculation,
the simulation size and on the accuracy required
for the forces, since higher accuracy will translate
directly into more node examinations and longer
interaction lists.

5.2. Forces obtained via direct summation

VINE includes a run-time switch to calculate
gravitational forces via direct summation, using
either the general purpose processor on which all
other calculations are made, or GRAPE hardware
if it exists.

5.2.1. Using the host processor

VINE includes a run time option to calculate
gravitational forces via direct summation, using
the general purpose processor on which all other
calculations are made. Although it is indeed sim-
ple in practice to compute gravitational forces by
direct summation, it is much more difficult to
make that computation fast. At its simplest, the
summation is characterized by repeatedly cycling
through the entire list of particles, incrementing a
partial sum of the acceleration on one particle at
a time until the list is exhausted, then repeating
the process until accelerations on all particles have
been calculated. On modern microprocessors, this
method suffers from the fact that it makes ab-
solutely no use of the available cache memory to
store data that are used more than once.

When accelerations on many particles are re-

quired, it is possible to speed up the calculations
substantially by using the same cache blocking
techniques that were employed to speed up the ap-
proximate calculation as described in section 5.1
above. Instead of cycling through the entire list of
particles one after the other, we load a small num-
ber, np, of positions and masses into the cache
then calculate partial sums of the accelerations on
these particles due to the full list of all Np other
particles in the simulation, one after the other.
Loads of data for a new particle on the long list
occur rarely compared to loads the cached parti-
cles, and so are comparatively cheap compared to
the number of computations performed using that
data. When the list of Np particles is exhausted,
the accelerations for the first np particles are com-
plete. We then load a new set of np particle data
into the cache and repeat the process until the list
of all particles is complete.

5.2.2. Using GRAPE hardware

VINE includes compile time options to calcu-
late gravitational forces using versions 3, 5 and
6 of the GRAPE hardware, through calls to a li-
brary of communication and calculation routines
distributed with the hardware itself. The simplest
approach in using GRAPE boards is to sum the
contributions of all particles on each other directly.
While it does not change the overall O(N2) scaling
of the algorithm, it provides a much faster calcu-
lation due to the much lower coefficient in front of
the O(N2) term.

The mechanics of the method used to perform
the calculations is quite similar to that used for
direct summation on the host. Data for fixed
number of particles, in this case totally a few
megabytes in size, are transferred to the GRAPE
and used as source particles for the calculation.
Small groups of sink particles are then trans-
ferred and partial sums of the accelerations are
calculated on them using the sink nodes in the
GRAPE’s memory, then returned to the host and
added to the particle’s accelerations there. When
all sink particles have been processed for all source
particles, the calculation is complete.

17



5.3. Forces from the combined tree based

and GRAPE based approaches

VINE includes a run time selectable option to
use GRAPE hardware to calculate gravitational
forces from lists of nodes and atoms obtained
from a tree traversal, rather than from a direct
summation. This combination was first discussed
by Makino (1991) and later Athanassoula et al.
(1998) and Kawai et al. (2000) reported its perfor-
mance on GRAPE-3 and GRAPE-5, respectively.
Efficient use of the GRAPE/tree option in VINE
requires that the code and its run time parameters
be tuned to somewhat different settings than with
the tree/host combination because, with the stan-
dard settings, the costs of communication with the
GRAPE far outweigh any speedups due to the op-
timized hardware.

In order to reduce the extreme costs of commu-
nication between the GRAPE and host, calcula-
tions must be performed for a much larger group
of particles than will be optimal in the standard
form, so that an interaction list of a given size
can be reused many more times before being dis-
carded. Communication costs are high because
the number of particles on which forces can be
calculated with the same interaction list is lim-
ited to the population of a clump, which will be
∼ 50 particles (section 7.3.1). Costs would be re-
duced if the maximum clump population were set
to very large values, but at the expense of substan-
tially increasing the time required for SPH calcu-
lations. To retain both fast gravity and SPH cal-
culation, we define a set of nodes, which we refer
to as ‘bunches’, that play the same role as clumps
do in the tree based calculation but contain many
more particles.

There are two competing effects that change
the effective calculation rate. Reducing the bunch
population reduces the length of the interaction
list used to calculate forces on its particles. Re-
ducing the size of this list is important because
it must be sent to the GRAPE, and shorter lists
minimize the per-transfer communication cost. At
the same time, smaller bunches mean more trans-
fers, because each tree traversal produces a differ-
ent interaction list so that total data volume sent
actually increases. On the other hand, increasing
the bunch population reduces the number of trans-
fers, but increases their size because the interac-

tion lists are longer, again increasing the total data
volume that must be sent. Minimizing neither the
number of transfers nor their size, independent of
the other, will produce optimal performance. The
total time for one force computation on all parti-
cles is instead a complicated function of the size
and number of communications with the GRAPE
combined with the number of floating point oper-
ations needed and the desired force accuracy. The
calculation rate also depends on latency and band-
width of the connection to GRAPE, but because
these are mostly determined by hardware (there is
a slight dependence on the chipset on the moth-
erboard of the host computer), they are usually
beyond the user’s control.

When GRAPE is used in VINE, the far traver-
sals in the gravity calculation proceed as in section
4.2 with the list of bunches used in place of the list
of clumps, creating a single interaction list for the
entire bunch. Additionally, rather than proceed-
ing to a set of close traversals over neighboring
bunches, the far traversal continues until all nodes
and atoms outside the sink bunch are determined.
Finally, all particles in the bunch are automati-
cally added to the interaction list. We discuss the
optimal choice for the population of bunches in
section 7.3.1.

Due to the differently tuned traversal, and be-
cause GRAPE processors can compute force in-
teractions to monopole order only, the accuracy of
the forces that result from the calculations will be
different from those obtained from a tree based so-
lution alone, given the same setting of the MAC.
To obtain forces of comparable accuracy, the MAC
setting must also be modified, to a more restric-
tive value. In section 7.2.2 we define the MAC
settings that produce comparable accuracy for the
tree/host and tree/GRAPE modes.

6. Overview of the code

VINE is written in the Fortran 95 language, but
in a largely Fortran 77 style which will be familiar
to and comfortable for most astrophysicists. For
this reason, relatively little use has been made of
the newer language revision’s features, such as de-
rived types (somewhat similar to C ‘structures’)
or pointers. On the other hand, extensive use has
been made of the ‘module’ format of grouping pro-
cedures together both to improve modularity of

18



the code and in order to enable the improved de-
bugging features such as argument checking avail-
able when they are used.

Although care has been taken to limit the mem-
ory footprint of the code, we have not made it a
primary focus in our development. Instead, we
have concentrated on performance improvements
and on reducing the vulnerability of the calcula-
tions to errors associated with loss of precision
when, e.g., when two quite similar values are dif-
ferenced, or two quite different values are summed.
Errors of this sort will inevitably develop in large
simulations because particles are closely spaced
and the precision of numerical representation of
their positions is limited. In this context, and
with an expectation of simulations of ever increas-
ing size in the future, we have declared all real
variables in the code to be ‘double precision’ (8
bytes on most systems), for which about 15 digits
of precision are retained at the cost of doubling
the required memory, relative to single precision.
While even this level of precision does not elimi-
nate finite precision errors, they will at least be of
much lower magnitude.

Table 1 contains a listing of all real and integer
arrays, normalized to the total number of particles
of all types, Np, and the number of SPH particles,
NSPH, and broken down for each component of
the code. The number of arrays allocated to the
tree actually defines an equivalent number of Np

length arrays because the arrays in the tree hold
2Np − 1 elements corresponding to both particles
and nodes. The number of arrays is also depen-
dent on the number of dimensions, d, defined at
compile time to be either two or three. In typi-
cal operation, we expect that the code will be run
in 3D, will include one integrator, use individual
time steps, and include gravity using the multipole
summation method and the tree. In this case, the
total amount of memory required for a simulation
containing Np particles, of which NSPH are also
SPH particles will be

M = [(19 + 5Nproc) I + 53D]Np

+ [2I + 17D]NSPH (11)

when the leapfrog integrator is used or

M = [(19 + 5Nproc) I + 59D]Np

+ [2I + 22D]NSPH (12)

when the Runge-Kutta integrator is used. If dou-
ble precision values require eight bytes and inte-
gers require four, then a simulation on one proces-
sor with either entirely N -body or SPH particles
only will require 520 or 664 bytes of memory per
particle when the leapfrog integrator is used, and
568 or 752 bytes per particle when the Runge-
Kutta integrator is used. In comparison, VINE
requires 30-50% more total memory per particle
than the Gadget and GOTPM codes (Springel
2005; Dubinski et al. 2003), when they are used in
double precision mode. Approximately half of the
extra cost is due to fact that VINE includes the
quadrupole in the multipole summation of grav-
ity, which requires 96 bytes/particle to store the
quadrupole moments for all nodes. Other impor-
tant components of memory usage are accounted
for by additional arrays used to implement opti-
mizations, allow for modularity or to implement
features not present in other codes. In general,
given present trends in the costs for additional
memory and machine size compared to processor
speed, the larger memory requirements are un-
likely to restrict the possibilities for workers to
perform simulations of any desirable size.

19



Table 1

Number of Arrays Required by VINE modules

Module Integer Double Integer (sph) Double (sph)

Particle data 2 2d + 4 0 6
Integrator data

Leapfrog 0 3d + 2 0 5
Runge-Kutta 0 5d + 2 0 10

Ind. TS data 6 2 0 0
SPH data 0 0 2 6
Tree data 11 8d + 4 0 0
Tree runtime 4.5Nproc 0 0 0
Tree build runtime 0.5Nproc + 3 0 0 0
Pnt. Mass runtime 1 0 0 0
Grape 6 data 0 10 0 0

20



7. Performance

After describing the code, its features and op-
timizations, we move now to a discussion of its
performance. Two separate qualities of the code
affect the performance. First, the code itself has a
number of compile time and run time settings that
affect its speed and accuracy, such as the maxi-
mum number of particles contained in a clump or
the specific MAC used or, at a deeper level, the
different optimizations made to the layout of vari-
ables in memory as discussed above. Second, the
hardware architecture on which the code is run
may be faster or slower than some other compet-
ing architecture, or may have settings which can
be tuned to provide better performance for the
code.

In this section, we investigate the sensitivity of
calculations with VINE to the settings of a num-
ber of parameters, both in terms of the speed and
of the accuracy of the calculations. We first de-
scribe the initial conditions of three test problems
on which we run our tests. Second, we describe
the results of tests designed to determine optimal
settings for the gravity calculations performed us-
ing each of the three multipole acceptance crite-
ria defined in VINE, with and without the use of
GRAPE hardware. Next, we explore the sensitiv-
ity of the gravity and SPH calculations rates to
the size of the clumps used to accelerate the tree
traversals. Finally, we describe the serial and par-
allel performance of the major components of the
code and their sensitivity to the various optimiza-
tions discussed above.

Our preliminary testing showed that some pa-
rameter settings (e.g. high accuracy settings for
the MAC used in the gravity calculation) could
result in significant impacts on performance as a
function of processor count due to limitations such
as memory latencies due to NUMA architectures.
Although in the end, we found that the most de-
sirable parameter settings do not appear to be
highly sensitive to such architectural features, we
chose to sample the range of processor counts rel-
atively densely in order to explore sensitivity to
such issues. Dense sampling also enables more di-
rect comparisons on several different architectures
which may have both different maximum proces-
sor counts and different scaling as a function of
processor count.

In each of the comparisons that follow, we show
the effect of varying one of the parameters to which
the code’s speed is sensitive, while keeping all oth-
ers fixed at their optimal values. For reference,
and unless otherwise indicated, we run the tests
using 8 processors of the Origin 3000 listed in ta-
ble 3 and we use the Gadget MAC with an opening
criterion set to θ = 5 × 10−3. This setting yields
gravitational forces for 99% of particles that are
accurate to a few ×10−3, as we show in section 7.3.
We use a maximum population of 70 particles in a
single clump and we trigger a complete tree rebuild
when the size of any clump reaches twice its value
immediately following the rebuild. We use cache
blocking, tuned to the size of the L1 cache of each
architecture1, and the largest page size available
on each machine. Finally, we reorder the particles
before performing any of the speed tests. In these
tests, one ‘calculation of SPH quantities’ is dom-
inated primarily by the calculations of the mass
density and the hydrodynamic forces. It also in-
cludes the calculation of the equation of state, the
internal energy derivative, and smoothing length
variation.

7.1. Description of the test problems

Because the code can be used to follow the evo-
lution of N -body particles alone, SPH particles
alone, or both together, we will define a test prob-
lem for each option, in order to demonstrate its
performance in each kind of simulation. These
three test problems will be referred to as the N -
body test problem, the SPH test problem and the
mixed test problem. In order to understand the
performance of the code as a function of resolu-
tion, the mixed problem will have realizations at
several resolutions.

1Note however that Itanium 2 processors permit only inte-
gers to be loaded into the L1 cache, so for that architecture,
we use cache blocking tuned to the size of the L2 cache

21



Table 2

Test simulations

Name Number of Number of
SPH Particles N−body Particles

N -body 1 0 160000
N -body 2 0 320000
N -body 3 0 640000
N -body 4 0 2000000
N -body 5 0 7000000
SPH (Initial) 3500000 0
SPH (Evolved) 3500000 0
Merger1 37500 232500
Merger2 75000 465000
Merger3 150000 930000
Merger4 300000 1860000
Merger5 600000 3720000
Merger6 1200000 7440000

22



7.1.1. The N -body test problem

The N -body test problem is a sphere with den-
sity profile of ρ ∼ R−1/4 which is set up according
to the method described by (Hernquist 1990a) and
which is realized with 7 × 106 particles. A lower
resolution version with 2 × 106 has been used for
the force accuracy tests in section 7.2.1. Our sys-
tem has a total mass of 5.6 × 1012M⊙, a cut off
radius of 175 kpc and a scale radius of 35 kpc.
We also consider variants of this test with parti-
cle counts ranging to as low as 160000 (see table
2), in order to study the influence of resolution
on bunch size (section 7.3.1) and force accuracy
when GRAPE coprocessors are used. For all tests
involving the GRAPE processors, or comparing
the speed of VINE to them, we employ Plummer
softening, while all other measurements involving
these tests we use the fixed spline softening option.
In order to maintain systematically consistent tim-
ings at different resolutions, we scale the gravita-
tional softening length according to the cube root
of the number of particles in the simulation.

7.1.2. The SPH test problem

The SPH test problem is a set of two condi-
tions defining the initial and evolved state of a
turbulent molecular cloud which undergoes frag-
mentation and forms stars. It is identical in setup
to the simulations of Bate et al. (2003), however
it was set up using a different random seed. The
molecular cloud in this model is initially spherical,
with uniform density and is realized with 3.5×106

particles. It has mass and diameter of 50M⊙ and
0.375 pc respectively, and it has an initial temper-
ature of 10 K. The free-fall time of the cloud is
tff = 1.9× 105 yr and the late time condition has
undergone slightly more than one free fall time of
evolution and is characterized by a a very inhomo-
geneous density distribution. For more details, we
refer the reader to Bate et al. (2003).

7.1.3. The mixed test problem

In order to test the code’s abilities on a problem
which incorporates both N -body and SPH par-
ticles, we use a set of initial conditions for spi-
ral galaxy mergers, similar to those used by Naab
et al. (2006b) and Wetzstein et al. (2007), in which
two spiral galaxies are initiated on a parabolic or-
bit at a distance of 105 kpc. Each galaxy consists

of a stellar disk and bulge, a gaseous disk and a
dark matter halo, set up according to the method
of Hernquist (1993). The components have masses
of Md = 3.92× 1010M⊙ and Mg = 1.68× 1010M⊙

for the stellar and gas disks respectively, and Mb =
0.2Md for the stellar bulge and an additional mass
of Mh = 3.248×1010M⊙ defining the dark matter
halo. Both stellar and gas disc have an exponential
surface density profile with scale lengths of 3.5 kpc
and 10.5 kpc, respectively. The dark matter halo
is modelled as a pseudo-isothermal sphere with a
core radius of rc,h = 3.5 kpc and a cut off radius of
rcut,h = 35 kpc. For more details about the initial
conditions, we refer the reader to Wetzstein et al.
(2007).

We have created models of this merger setup at
six different resolutions (see table 2). In the lowest
resolution model, Merger1, each galaxy contained
37500 particles for the stellar disk, 18750 for the
gas disk, 3750 for the stellar bulge and 75000 for
the dark matter halo. For each higher resolution
model in the sequence, the particle numbers of
each species have been doubled. The fraction of
gas particles, for which SPH calculations are re-
quired, thus remains constant for each resolution
at ∼ 14% of the total. Due both to this compara-
tively small fraction, and the inhomogeneous spa-
tial distribution, this problem will therefore repre-
sent a challenging test of the load balancing and
parallel efficiency achievable by the calculations of
the hydrodynamic quantities with SPH.

7.2. Tuning the code I: accuracy and speed

of various alternatives for the gravity

calculations

The ability to compute forces accurately enough
to integrate particle trajectories correctly using a
tree based force calculation is governed by the
choice of the MAC and its setting. In this section
we present quantitative tests of the accuracies for
all three opening criteria implemented in VINE:
the geometric MAC (equation 7), the SW abso-
lute error MAC (equation 8) and the Gadget MAC
(equation 9).

We perform our tests on low and high resolu-
tion versions of our N -body test problem, as well
as the initial and evolved states of our SPH test
problem. The low resolution N -body test was re-
alized with 2×106 particles. For all tests with the
GRAPE/tree option, a GRAPE-6A board (’Mi-

23



croGRAPE’) has been used.

We determine exact accelerations in each of
the test problems using either a calculation of the
forces using the direct summation option in VINE,
or the geometric MAC with an opening criterion
set to θ = 10−10, effectively equivalent to a direct
summation of the contributions from each parti-
cle on the others. These exact values were used as
references to calculate errors in the magnitudes of
the accelerations, defined as

|δa | =
|a − a0 |

|a0 |
(13)

where a and a0 are the approximated and exact
accelerations, respectively.

Determination of a specific limit on the accept-
able errors will in general depend on the system
simulated, the time span over which the system
must be evolved, and the goals of the simulation.
Several general principles hold for most systems
however. First, it will be desirable to have a
narrow error distribution, since the work required
to compute highly accurate accelerations on some
particles will be wasted if the simulation evolves
incorrectly due to much larger errors of others. In
general, a reasonable requirement for force accu-
racy is that the vast majority, say 99%, of the
particles have force errors below 0.1 − 0.5%. In
addition, the remaining 1% particles with higher
errors should still have force errors less than some
other, higher threshold, say 1%. Therefore, we will
adopt these limits in our analysis. Again however,
we note that the question of what force error dis-
tribution is required for accurate simulation of a
given system, depends both on the system mor-
phology, and on the goals of the researcher. The
MAC settings required for the code in such cases
may therefore be higher or lower than quoted here,
though the values we choose are known to work
reasonably well on a wide variety of problems in
the literature.

Figure 2 shows distributions for each of the
three MACs implemented in VINE, for both the
tree based calculation and the GRAPE/tree com-
bination, performed on a single Itanium 2 proces-
sor, or in combination with a GRAPE-6A. In sec-
tions 7.2.1 and 7.2.2, we discuss these distributions
in detail.

7.2.1. Accuracy using the tree/host based calcu-
lation

The left panels of figure 2 show the cumulative
error distributions for the tree based force compu-
tation performed on the host. The most relevant
parts of the distributions are the overall widths of
the distributions and the upper right part of each
curve, which show the population of particles with
the largest errors in the calculation. These are the
most likely to cause visible numerical errors to the
evolution of the system, due to inaccurate integra-
tion of particle trajectories.

For the geometric MAC, the distribution rises
steeply towards larger errors, through an ‘S’
shaped curve, with a small ‘tail’ population at the
high end limit of the distribution and a somewhat
larger tail population at the low end limit. Though
we have made no explicit study of particles in ei-
ther the high or low error tails, we presume that
most near the high error limit are those for which
the absolute magnitude of the force is small, so
that the relative error is correspondingly larger.
For θ = 1.0, the high error tail extends to errors
as great as ∼ 0.8% and about 25% of the parti-
cles have errors greater than 0.1%, though none
have errors as large as 1%. The case of θ = 0.8
produces more accurate results, but still ≈ 4%
of the particles have force errors > 0.1%. When
θ = 0.6, no particle has errors above 0.1%. This
setting produces an error distribution somewhat
more restrictive than the requirement we define
above, and we conclude that adopting a value of
θ = 0.6 − 0.7 in VINE can be regarded as accept-
able for most scientific applications.

For the SW MAC, the error curve again follows
an ‘S’ shape, with similar maxima, of ∼ 0.5−0.8%,
for the most permissive settings. Because VINE
converts all quantities to dimensionless units for
use inside the code, stating a specific value for the
SW MAC setting loses meaning, since without de-
tails of the unit system in place, limits on the con-
tribution of any given node to the absolute force
error become difficult to interpret. Nevertheless,
and with the understanding that the unit conver-
sions are done with the intent of converting the
relevant physical variables to unitless quantities
near unity, we provide such a statement. For the
particle distribution here, a values of θ < 0.05−0.1
(in internal code units) appears to be acceptable

24



Fig. 2.— Cumulative distribution of the fraction of particles with relative force errors lower than a given
value. The left column shows the force error distributions for the tree on host, the right column for the
GRAPE-tree combination. Results for the geometric, SW and Gadget MACs are shown in the top, middle
and bottom rows, respectively. For the geometric MAC, the curves represent θ = (0.1, 0.2, 0.4, 0.6, 0.8, 1.0),
for the SW MAC curves correspond to settings of 10−6 ≤ θ ≤ 102 in decade increments and for the Gadget
MAC curves corresponding to 10−9 ≤ θ ≤ 100 in decade increments are shown.

25



to use if our limit described above is applied.
For other unit systems, perhaps implemented by
VINE’s users, a different setting may be required.

For the Gadget MAC, the error distributions
again rise steeply as a function of error magnitude
and, although the largest errors with the most per-
missive settings extend to slightly larger values
than for either of the other two choices, no par-
ticles with errors greater than 1% are found for
any setting. Settings with θ & 10−2 produce un-
acceptably large errors in the forces according to
the criteria above, while values θ . 10−3 provide
more restrictive error limits. We suggest that a
reasonable choice is θ ∼ 1 − 5 × 10−3, to approxi-
mate our chosen error criteria.

An important characteristic of the geometric
and Gadget MACs is that the shape of the er-
ror distribution is both narrow and changes little
as the tolerance parameter, θ, decreases, so that
the curve simply shifts further and further to the
right. This is a very desirable feature not only
because errors for the majority of particles de-
creases, but also because the largest force errors
are effectively controlled by reducing θ. If instead
a significant population of particles remain with
large errors, while the rest decrease, a simulation
may become computationally costly while remain-
ing insufficiently accurate. This is because parti-
cles whose forces errors are large can affect the
evolutionary trajectory of a simulation dispropor-
tionately to their number (for a particularly dra-
matic example of such effects, see e.g., the explod-
ing galaxy problem in Salmon & Warren 1994), so
controlling their behavior is of particular impor-
tance for accurate simulations.

In contrast, while the error curves for the SW
MAC for the most permissive tolerance settings
appear very similar to those of the other two,
curves representing more restrictive settings do
not. The distribution shifts not only towards lower
errors, but also changes shape. While the low
end of the distribution decreases steadily, the high
error tail does not, leading to a large spread in
the calculated error magnitudes for different par-
ticles. We believe the widened distribution is a
consequence of the fact that the SW MAC, as im-
plemented in VINE, constrains the absolute error
magnitude of the force on each particle, while fig-
ure 2 shows relative error magnitudes. In a system
where particles have a wide distribution of force

magnitudes, errors for particles with small mag-
nitudes will decrease less quickly than those with
larger until the opening criterion falls to some crit-
ical value for a given particle and causes additional
nodes to be opened in the tree.

Finally, we note that for the most permissive
settings of both the SW and Gadget MACs, and
for the same relative change in the MAC setting,
much smaller differences are seen in the error dis-
tributions compared to changes at more restric-
tive settings. This is an important feature of both
MACs because they imply an effective upper limit
on the force errors, a clearly desirable feature for
numerical realization of any physical system, all
the moreso since the error limits remain compar-
atively small.

We believe the reason for the limit is that both
MACs enforce a requirement that tree nodes are
only accepted for use in the force summation if
the particle (or clump) on which forces are cal-
culated lies exterior to the node itself (see Vine1,
section 4.2) for any setting of the MAC. This phys-
ical constraint corresponds to the numerical con-
dition that a given tree traversal will produce the
shortest possible list of acceptable nodes for use
in the force summation, for that MAC. The most
permissive settings shown in figure 2 have clearly
entered the regime where convergence of the gener-
ated interaction list towards this minimal list has
begun, and implying that the error limits shown
are near those of the minimal list as well. The
geometric MAC does not explicitly contain a sim-
ilar condition, however the same effect is still real-
ized in practice because source and sink nodes may
overlap in space for settings with θ > 1, a condi-
tion which violates the assumptions underlying the
multipole approximation used to approximate the
forces in the first place. For a more detailed dis-
cussion of this effect, we refer the reader to section
7.2.3.

7.2.2. Accuracy of the GRAPE/tree combination

Error distributions for the GRAPE-tree based
force calculations are shown in the right panels of
figure 2. As expected for calculations involving
GRAPE hardware, errors for all three MACs are
larger than in the corresponding tree/host based
calculation for identical MAC settings. Except for
the most permissive tolerance settings, error lim-
its an order of magnitude larger are typically real-

26



ized with the GRAPE/tree option in comparison
to those with the tree/host option. While maxi-
mum errors remain below ∼ 1%, more restrictive
settings do not shift to smaller errors to nearly
the extent that the tree/host based calculations
do, for the same tolerance parameter.

We interpret each of the effects as consequences
of the differences between the code implementa-
tion in either case. The GRAPE/tree combina-
tion makes use of a modified tree traversal (sec-
tion 5.3), with large clump sizes (‘bunches’) for
the far traversal and does not terminate with a
list of neighbor bunches for use in a close traver-
sal, but instead calculates many more pairwise in-
teractions between individual particles. This fea-
ture implies a more accurate calculation of the
forces from nearby particles on each other. At
the same time however, the GRAPE/tree option
accounts only for the monopole moment of a node,
and so implies a less accurate calculation of forces
from more distant particle groupings. Therefore,
for the same value of the tolerance parameter θ,
the computed accelerations are less accurate than
those of the tree based calculation, which includes
quadrupole moments too.

For this problem, error limits at or below the
constraints defined above remain within reach of
the GRAPE-6A/tree combination, but require
much more restrictive settings of the opening cri-
terion. Values of the opening criterion of θ . 0.6,
θ . 10−2−10−3 and θ . 10−4−10−5 are required
for the geometric, SW absolute and Gadget MACs
respectively.

7.2.3. The relative speed of using different MACs
for a given accuracy

In this section, we examine the relative effi-
ciency of using each MAC for producing accelera-
tions of a given accuracy. For these tests, we use
the full N -body test problem and both variants of
the SPH test problem. Each test uses the same
executable code, running on 8 processors of the
Origin 3000. For each run, we specify the MAC
and MAC setting via an input file, run the exe-
cutable and output accelerations for all the parti-
cles for later analysis. We sort the errors according
to their magnitude to determine the value of the
error magnitudes below which which 50% and 99%
of particles lie. Combining information from both
error limits, it will be possible to quantify both

an approximate upper limit on the errors and a
crude measure of the overall width of the distribu-
tion, from the difference between the two quanti-
ties. The overall shapes of the error distributions
are similar to those shown in figure 2.

Figure 3 shows the rate of gravity calculations
per second as a function of the 50% (i.e. median)
and 99% error magnitudes. In their asymptotic,
high accuracy limits, the rates for each MAC are
each approximately proportional to the square of
the accuracy. This proportionality is expected
from the truncation of the multipole series at
quadrupole order (Salmon & Warren 1994). In
that limit however, the Gadget MAC yields rates
that are a factor ∼ 2 higher than those of the geo-
metric MAC, with the SW MAC lying between
and yielding a slightly different proportionality.
The difference appears to be due to the fact that
the SW MAC is used in its form as a limiter on
the absolute error magnitude that any given node
can contribute rather than the relative error, as
is the case for the other two MACs. We attribute
the overall speed differences between the MACs to
the fact that while the geometric MAC accounts
for only the physical size of a source node, each
of the other two also account, in different approx-
imations, for its internal structure as well. The
additional information proves valuable in allowing
nodes to be selected, which otherwise would need
to be opened and examined in more detail.

The error magnitudes for the most liberal set-
tings of each of the three MACs in the same test
vary only slightly from one another. The similari-
ties are presumably due to the fact that the three
different opening criteria each reduce to the same
physical condition that the sink point at which the
force is calculated must be exterior to the source
node that exerts the force. Although the error
magnitudes from the same test are similar, they
differ from one particle distribution to the next, as
do the calculation rates realized for those errors.
The rates are highest in the case of the SPH ini-
tial condition and lowest for the evolved condition,
with the Hernquist sphere lying in between. The
differences are significant because we expect that
the speed of a gravitational force calculation will
be proportional to Np log Np, and would therefore
expect similar rates in the two SPH conditions and
lower rates in the N -body test with twice as many
particles.

27



Fig. 3.— The rate of gravitational force calculations for the code using the three MACs implemented in
VINE, as a function of the accuracy. The top panel shows the rates for which 99% of the particles have
error magnitudes less than that shown, while the bottom panel shows the rates for the median error rate, at
which 50% of particles have error magnitudes less than that shown. The solid curve shows the rates obtained
from the geometric MAC, the dotted curve shows the rates from the Gadget MAC and the dashed curve
shows rates for the SW MAC. Points correspond to settings of θ = 0.1, 0.2, 0.4, 0.5, 0.6, 0.8 and 1.0 for the
geometric MAC, to settings of θ in decade increments from 10−8 to 100 for the Gadget MAC, and to settings
θ in decade increments from 10−6 to 102 for the SW absolute error MAC, using internal code units for the
forces.

Some clarity emerges if we also correlate the
rates and relative force errors in each problem and
their overall morphology. The relative force errors
are largest in the SPH initial condition, smallest
in the evolved condition and intermediate in the
Hernquist sphere–an opposite trend from that seen
for the rates. At the same time, while the SPH
initial condition is quite smooth, the Hernquist
sphere is centrally condensed and the evolved SPH
condition is near the onset of fragmentation and is
even more inhomogeneous. We therefore attribute

the rate and accuracy differences to the differences
in particle distributions in each test and conclude
that, at least on scales of factors of two difference
in particle count, the morphology of the particle
distribution plays a role much larger than the over-
all scaling.

Even for the most liberal MAC settings, the
median and 99% error magnitudes are well be-
low 1% and ∼2% respectively for all three MACs
for smooth conditions, and nearer to ∼ 0.5% for
the same settings in non-smooth conditions. This

28



level of precision differs from the behavior of many
other codes, given the same MAC and setting (see,
eg., corresponding figures in Springel et al. 2001;
Springel 2005; Wadsley et al. 2004; Dubinski et al.
2003), first, because the calculated size of each
node (equation 5) as incorporated into the MAC
for that node is always an overestimate of its true
size, so that a search will tend to open more nodes
than are strictly required. Second, dividing the
traversals into far and near components for groups
of particles means that, for a given setting, more
nodes and atoms are required than would be the
case for a single particle. While the MAC must be
satisfied for every node on the interaction list at
the point in the clump closest to that node, most
particles in the clump will be found further away,
where the node’s parent might otherwise be ac-
ceptable. The trade off is beneficial in the sense
that fewer traversals are required, even though
more interactions result.

Of particular interest for most numerical simu-
lations is the range of relative errors above a few
×10−4. In this range, the additional information
describing the internal node structure and incor-
porated into the Gadget and SW MACs provides
its greatest benefit. The rates obtained from the
Gadget MAC decrease from their most liberal set-
tings by only ∼20% while the calculation becomes
an order of magnitude more accurate, and the set-
ting itself changes from 100 to 10−3. The SW
MAC exhibits a similar, but less pronounced char-
acteristic.

Given the results of these tests and those of
the previous sections, we recommend the use of
the Gadget MAC in VINE, with a setting of
∼ 5 × 10−3, for simulations to run at both high
accuracy and high efficiency. This setting ensures
maximum relative errors of ∼ 1% in very smooth
conditions, and ∼ 0.1− 0.2% in more evolved sys-
tems, without increasing the cost of the calcu-
lation. This accuracy is also comparable to the
expected numerical noise present in the hydrody-
namic quantities of SPH simulations (Herant &
Woosley 1994), below which higher accuracy will
yield little additional benefit to a simulation.

7.3. Tuning the code II: optimal software

settings and memory layout optimiza-

tions

In this section, we will discuss the performance
of the most costly components of simulations using
VINE that interact with the tree. In order, these
are the gravity calculation, the SPH calculations
and the tree build/revision. We explore the sensi-
tivity of the performance to various optimizations,
in order to quantify the influence that each makes
on the total absolute performance and the scaled
performance. For our purposes, absolute (‘raw’)
performance will be defined simply by higher cal-
culation rates, while scaled performance will be
defined by efficiency of parallel scaling, relative to
the performance on one processor.

7.3.1. The optimum number of particles in a
clump or bunch

The tree traversal strategies described in sec-
tions 4.2 and 5.3 each contain one free parameter
that must be tuned in order to provide the best
performance, namely the number of particles con-
tained in a clump or bunch. In the case of clump
population, both the gravity and the SPH calcu-
lations will be affected because tree traversals are
done in both cases, to search for acceptable nodes
and atoms in the gravity calculation, or for neigh-
bors in the SPH calculations.

Clumps and bunches may by populated by any
number of particles up to and including a preset
maximum. In this section, we explore the sensitiv-
ity of the calculation rate to that maximum popu-
lation value. We choose the maximum as our met-
ric because it is easily available for modification by
the user, while the more directly intuitive values
of average or exact populations must be derived
from the particle distribution and the exact tree
structure. Over a wide variety of morphologies, we
have found that the population distribution fills
essentially all values from ‘singleton’ clumps up
to the maximum, and the average fall typically at
∼ 50 − 60% of the maximum.

Figure 4 shows the calculation rates for a single
gravity calculation with the N -body test problem
as a function of the maximum number of parti-
cles contained in a clump. As the maximum is
increased from a single particle to ∼ 30, the calcu-
lation rate increases by a factor of ∼ 2. Increasing

29



Fig. 4.— The calculation rate for gravitational
forces on particles in the N -body test problem, as
a function of the maximum particle population in
a clump. The solid curve shows the rates with
cache blocking, while the dotted curve shows the
rates without. Both use the Gadget MAC, with
opening criterion θ = 5 × 10−3.

the maximum further results in much smaller im-
provements, with a broad maximum in the rates
near ∼ 70 particles per clump. Relative to the
performance with a clump population of one (i.e.
individual traversals for each particle), we obtain
a speedup of ∼ 2.1. The two curves represent
the performance obtained with and without cache
blocking (see section 5.1), and while both ver-
sions show improvements over the rate for indi-
vidual traversals, the unblocked version does not
increase nearly as much, saturating at a factor
∼ 1.75. The differences are important to quan-
tify because when individual time steps are used
in a simulation, only a relatively small fraction of
the particles in a clump will be active. In this
case, the benefits from cache blocking will be re-
duced by a factor related to the fraction of active
particles in each clump, and will more closely re-
flect the rates without cache blocking. Even in the
case when only two particles are active in a given
clump, some benefit of the cache blocking is re-
tained however, so we enable it by default, except
when only a single particle is active in a clump.

Figure 5 shows calculation rates for a single cal-
culation of all SPH quantities, including both den-
sities and the hydrodynamic accelerations, using
the initial and evolved particle distributions in the

Fig. 5.— The rate that all SPH calculations re-
quired in the two SPH test problems can be cal-
culated, as a function of the maximum number of
particles in a clump. The solid curve represents
the times for the initial condition, and the dotted
line represents the times for the evolved state.

SPH test problems described above. Here again
we see a substantial improvement as the maxi-
mum clump population increases. In the case of
the initial condition, the rate increases by a fac-
tor ∼ 1.5 over that required for clumps defined
as single particles. The evolved state speeds up
by a much greater factor of ∼ 3, presumably due
to an increased level of data reuse when calcula-
tions for nearby clumps occur in close succession.
Even for the fastest setting, the time required for
the evolved particle distribution does not match
that of the initial state however, where the opti-
mal rate is about 10% higher. We have not at-
tempted to trace the difference to a specific cause,
however it is comforting to realize that in spite of
the quite different morphologies, the rate of calcu-
lation changes by only a relatively small amount.

For both the gravity and the SPH calculations,
the maximum rate occurs when the maximum
number of particles per clump is ∼ 50 − 70. We
have therefore chosen to set its default value in
VINE to 70 in 3D simulations, which is also the
setting for the maximum number of neighbors al-
lowed for any SPH particle. No detailed tests
have been performed to determine an optimal set-
ting for 2D simulations, however small scale tests
(not shown here) indicate that the optimal value
is smaller. As for 3D, we set the maximum to

30



Fig. 6.— The calculation rate for gravitational
forces on particles in the N -body test problem at
several resolutions, as a function of the maximum
particle population in a bunch. We use the Gad-
get MAC, with opening criterion θ = 5 × 10−3.
For comparison, one test with the geometric MAC
and θ = 0.75 is shown as well. The host was
a single Itanium2 processor and used a GRAPE-
6A (’MicroGRAPE’) board for the gravity calcu-
lations themselves.

the maximum number of SPH neighbors, which is
∼ 30 for 2D simulations.

The speed of the gravity calculation is also sen-
sitive to the clump population when the tree is
used in combination with the GRAPE hardware.
So much so that it even lead us to define a dif-
ferent, larger grouping (‘bunches’) for use in com-
bination with GRAPEs, as discussed section 5.3.
The reason for the sensitivity is more complicated
when GRAPE is used however because the time
to solution includes contributions from not only
tree traversal and multipole summation computa-
tion, but also from communication to and from
the GRAPE processor.

Figure 6 shows calculation rates for a single
gravity calculation of the N -body test problem as
a function of maximum bunch population and us-
ing VINE in GRAPE+tree mode, and for a num-
ber of resolutions. We use the Gadget MAC with
θ = 5× 10−3 for all tests and include one compar-
ison to the geometric MAC with θ = 0.75 for the
case with 640000 particles. As was the case for
clump populations in the the host-alone gravity

calculation, the calculation rate is sensitive to the
maximum bunch population. The peak rates in-
crease by a factor of ∼ 1.5 or more over those for
smaller or larger populations. Of interest is the
fact that the optimal bunch population changes
as a function of the resolution of the simulation
itself, even though the simulations are of identical
configurations. While the case with 160000 parti-
cles has an optimal maximum bunch population of
∼ 400−600, the optimal population for the 7×106

particle realization is near ∼ 1200−1800. Because
the calculation speeds change little over a fairly
broad plateau of maximum bunch populations, it
is easy to achieve a near-optimal choice even with-
out extensive testing. The calculation rate de-
creases much more steeply for bunch sizes lower
than the optimum than for bunch sizes greater
than the optimum, so it is safer to adopt a higher
value if an estimate is required.

We believe that the sensitivity is a consequence
of the fact that the physical size of a bunch con-
taining a given number of particles decreases as
a function of increasing resolution, but the MAC
remains the same. This is important because the
preliminary interaction list for a bunch (i.e. the
interaction list that does not include the bunch
members themselves), will contain a volume just
outside its boundary in which most interactions
are with particles, rather than with nodes. If
that volume is determined by the MAC setting,
through appropriate choices as to which nodes to
open or accept, then much more time must be
spent in portions of the tree traversal that open
all nodes to their fullest extent–an inefficient use
of resources. If instead, we assume that bunches
contain more particles, a large fraction of such
tree nodes will be resolved at the level of single
particles by assumption, so that all costs of tree
traversal for this volume will be removed. Tak-
ing the argument to the extreme however–allowing
only a single bunch with all of the particles so
that the calculation returns to a pure O(N2

p )
proportionality–illustrates that there is clearly a
point of diminishing returns where this argument
fails.

7.3.2. Performance of the gravity calculation and
the effects of memory layout optimizations

In this section, we turn to a discussion of the se-
rial and parallel performance of the gravitational

31



Fig. 7.— The rate that gravitational forces on
particles in the N -body test problem can be cal-
culated on one processor under cumulatively more
memory layout optimizations, as defined in the
text. The three curves represent the rates ob-
tained using hardware page sizes of 16MB (solid),
1MB (dotted) and 64kB (dashed) that are avail-
able on the Origin 3000.

force calculation, which will typically be the most
costly part of any particle simulation of a self grav-
itating system. We also discuss the benefits of each
of the memory layout optimizations discussed in
sections 2.4 and 5.1. For these tests, we use the
N -body test problem.

In figure 7, we show the speed of a single grav-
ity calculation performed several times with a dif-
ferent set of optimizations: each realization con-
tains all optimizations of the previous levels, and
one addition. Defined as in the figure, optimiza-
tion level one means that no optimizations are
employed, other than to use the Gadget MAC.
Tree traversals are done for individual particles,
all node data are stored in separate arrays and are
not reordered as discussed in section 3.4. For level
two, traversals are done on clumps rather than
single particles and for level three, the tree data
are reordered to reflect the order of access in the
traversal. Level four arranges node data in two di-
mensional arrays so that all data for a single node
are located together in memory. Finally, level five
implements the cache blocking optimization. Al-
though not dependent on any specific code change,

the setting of the hardware page size defines an
additional ‘level’ of optimization which influences
calculation speed. To determine the effects that
it may have on the code, we repeat each test for
each of three page sizes: 64kB, 1MB and 16MB.

For the completely unoptimized case, serial per-
formance is 700, 1225 and 1700 particles per sec-
ond for the small, medium and large page sizes
respectively. With all optimizations included, the
calculation rate increases to 6270, 6830 and 7170
particles/s, for the same page sizes, respectively.
Total performance enhancement from the slowest
(level one with 64kB page size) to fastest (level 5
with 16MB page size) calculation is a factor ∼ 10,
with an additional factor of ∼ 2 coming from selec-
tion of the Gadget MAC in favor of the geometric
MAC as we saw in section 7.2.3. Although each
addition results in performance enhancement rel-
ative to the previous level, we do not believe that
the specific ordering as defined in the figure is re-
quired for improvements in the code. Though we
have not quantified the contribution of each op-
timization in isolation, we expect that each will
provide benefits, independent of all others, to any
code that implements them.

For all but the highest optimization level, vari-
ation between rates of identical optimization but
different page sizes is much larger than variation
between one optimization level and another with
the same page size. Moreover, identical optimiza-
tions provide different performance enhancements
when different page sizes are used. For large pages,
moving to grouped tree traversals provides more
than a factor three speedup, far more benefit than
any of the other optimizations. For small pages,
the total speedup provided by the first four opti-
mizations together provides only a factor two ben-
efit, with a further benefit of a factor of four from
cache blocking. We believe that while the exact
source of the variations is unimportant, they are
most likely due to the relative costs and frequen-
cies of simply loading a value from cache or mem-
ory compared to that of computing a new TLB
entry.

In terms of the ‘FLOP’ rate (floating point op-
erations per second) achieved by the code, we have
profiled tests similar to these with the ‘perfex’

utility available on Origin 3000 systems. We found
that the code achieves approximately 400 MFlops
per second, or about half of the theoretical maxi-

32



mum of 2 flops per clock cycle for 400MHz R12000
chips. We believe this rate is near ‘perfect’ in the
sense that the mix of operations (i.e. the propor-
tion of adds and multiplies) in most computation-
ally intensive loop (summing the multiple contri-
butions from nodes), is able to utilize only some
60% of the possible operations and the tree traver-
sal portion of the calculation contributes almost no
floating operations to the total.

In figure 8, we show the speed of a single gravity
calculation as a function of the number of pro-
cessors for the same series of optimizations de-
scribed above. For the unoptimized version, par-
allel performance increases near linearly up to a
maximum of only 10 processors and saturates en-
tirely at a speedup of ∼ 15. As for single pro-
cessor performance, absolute performance is bet-
ter with larger pages and, for successively higher
optimization levels, raw performance continues to
increase faster for large page size runs than for
small. While providing superior absolute perfor-
mance at all processor counts, parallel scaling per-
formance with large page sizes saturates on fewer
processors. We believe the reason can be tied to
the fact that the NUMA related latencies for ob-
taining data from distant nodes are partly masked
by the times required to calculate new page ad-
dresses. When fewer TLB entries are required,
only the NUMA latencies remain.

For the two highest optimization levels, scaled
performance for all variants is only slightly below
the ‘perfect’ scaling obtained by dividing the single
processor time by the number of processors. Raw
performance is dramatically different, with only
the cache blocking optimization providing perfor-
mance that is largely independent of page size.
The discrepancy between scaled and raw perfor-
mance is important to note because while better
scaled performance is desirable, it is actually bet-
ter raw performance that increases scientific pro-
ductivity. A code that scales linearly to a large
processor count may in fact perform less well than
another that does not scale as well, but whose
speed in an absolute sense is faster. The opti-
mizations described here increase both the raw
and scaled performance of the code.

It is also important to note that for the fully op-
timized code, only a comparatively small 14% per-
formance deficit for small pages relative to large
pages remains. This is important because large

hardware pages on most systems are difficult or
impossible to use effectively in production envi-
ronments. Without cache blocking and on sys-
tems without adequate support for large pages,
rates would otherwise suffer dramatically and sim-
ulations will proceed far more slowly. The cache
blocking optimization thus ensures a better level of
tolerance to limitations of the hardware itself. We
believe the differences that remain are unavoidable
and a consequence of the fact that, while the force
summation can be cache blocked, the tree traversal
itself cannot be. Because the tree traversals sam-
ple a very large memory space very sparsely, TLB
entries must be discarded and recalculated much
more frequently when smaller page sizes are used,
resulting in slower execution times. The remain-
ing rate difference is small because the traversals
require only 10-20% of the total time required for
the gravity calculation itself.

The results from our analysis of the maximum
number of particles per clump in section 7.3.1,
demonstrate that calculation rates remain signifi-
cantly higher even when calculations for only a few
particles are performed. The cost of reading the
node data into the cache blocked array and then
re-reading it multiple times is both small and can
be amortized effectively over the calculations of
only a few particles. Cache blocking will therefore
remain effective even when only a small fraction
of the particles in a clump require updates, as will
often be the case when an individual time scheme
is used. Speed differences due to page size effects
will become somewhat more pronounced however
because the ratio of time spent in the traversal
itself, compared to the multipole summation, be-
comes less strongly weighted in favor of the sum-
mation. In the extreme case, when only a single
particle requires a calculation, we expect the scal-
ing to be similar to the curves shown for the level
four optimization in figure 8. Since most of the
time in any calculation is spent evolving a much
larger fraction of the particles than this, the bene-
fits of the cache blocking optimization will remain
substantial.

7.3.3. Performance of the SPH calculation and
additional benefits of particle reordering

In SPH simulations, the cost of the hydrody-
namic calculations is second only to the cost of
the gravity calculation and therefore also bene-

33



Fig. 8.— The rate that gravitational forces on particles in the N -body test problem can be calculated under
cumulatively more memory layout optimizations, as discussed in the text. Each panel contains three curves
representing the rates obtained using hardware page sizes of 16MB (solid), 1MB (dotted) and 64kB (dashed)
that are available on the Origin 3000, as a function of number of processors. Top to bottom, the numbers in
the upper left corner of each panel are the scaled parallel speedup of the code for the 16MB, 1MB and 64kB
page sizes, respectively, out of a maximum of 120 for linear speedup. Note that the vertical scale at each of
the three panel levels are larger in the lower panels.

34



Fig. 9.— Calculation rate for a single SPH calculation for the SPH test problem initial condition (top panels)
and the evolved condition (bottom panels), each before (left panels) and after (right panels) reordering the
particles locations in memory. The solid lines indicate results obtained with 16MB page sizes, and the dotted
lines results obtained with 64kB page sizes. Numbers in the upper left corner of each panel indicate the
scaled parallel speedup for the realizations with 16MB (top) and 64k (bottom) page sizes plotted in the
panel, respectively, out of a maximum of 120 for linear speedup.

fits from parallelization and optimization. Here
we examine the speed of a single calculation of
all hydrodynamic quantities using the initial and
evolved versions of the SPH test problem, and the
improvements that can be obtained by the particle
reordering optimization discussed in section 3.4.
While we expect that, overall, similar speedups
in the SPH calculations will be derived from the
various memory layout optimizations described in
section 7.3.2, we have not tested these specifically.
Instead, we examine only one additional optimiza-

tion not tested before–reordering the particle data
themselves. We also limit our tests to only the
64kB and 16MB page size variants.

In figure 9, we show the speed of a single cal-
culation of the SPH quantities for both the ini-
tial and evolved SPH test problem, before and af-
ter reordering the particle data according to the
second reordering variant in section 3.4. Overall
scaling of the fully optimized versions are excel-
lent, though slightly below those of the gravity
calculation, with speedups of nearly a factor be-

35



tween 90 and 100 out of a theoretical maximum of
120. The raw speeds of the SPH calculations, at
∼ 13900 particles per second per processor for the
initial condition and ∼ 12900 for the evolved con-
dition, are just under twice those of gravity (figure
8). The raw and scaled performance of the evolved
condition falls below that of the initial condition
by ∼ 10%, but we are encouraged that perfor-
mance does not degrade more noticably in either
case, a possibility not otherwise neglectable if the
particle distribution had played an important role
in the scaling.

The left hand panels of figure 9 show perfor-
mance prior to the reordering. As for the gravity
calculation, the rates are highly sensitive to page
size, with a performance enhancement of a factor
∼ 2.5 between 64kB and 16MB pages for both ini-
tial and evolved conditions. Further performance
enhancements of 10% occur for the large page vari-
ants when the particle data are reordered, over
and above that obtained from the reordering al-
ready done in the tree itself, and enhancements of
20% or more were common in tests performed on
other architectures (not shown here). While scaled
performance using small pages is good, raw per-
formance falls significantly below the large page
variants, even at high processor counts where per-
formance of the large page variants has saturated.
Reordering the particle data removes all signs of
saturation and both large and small page variants
run with nearly equal performance, demonstrating
the effectiveness of the reordering at insulating the
simulation from limitations of the hardware.

7.3.4. Performance of the tree build and revision

Constructing and revising the tree together
make up the third most costly component of parti-
cle simulations with VINE. In figure 10, we show
the speed of a complete tree rebuild for the N -
body test problem, before and after reordering the
particle data in memory, according to the discus-
sion in section 3.4. In figure 11 we show the speed
of a tree revision.

On a single processor, the tree build proceeds
at rate equivalent to 5 × 104 particles per second
with all optimizations, while the revision proceeds
at a rate equivalent to 7.3 × 105 particles per sec-
ond. These rates correspond to ∼ 7 and ∼ 100
times faster than one gravitational force calcula-
tion for the same particle distribution. As for the

Fig. 10.— The speed of a single tree rebuild, be-
fore (top panel) and after (bottom panel) reorder-
ing the particle data in memory, as a function
of number of processors. The three curves corre-
spond to the build done with 16MB pages (solid),
1MB pages (dotted) and 64kB pages (dashed).
Top to bottom, the numbers in the upper left re-
fer to the scaled parallel speedup for the 16MB,
1MB and 64kB page sizes, respectively, out of a
maximum of 120 for linear speedup.

gravity and SPH calculations, parallel scaling is
better with small hardware pages, and raw speed
is better with large pages. Before data reordering,
the large page (16MB) version runs a factor ∼ 3
faster than with small (64kB) pages. Also as with
gravity and SPH, reordering the particle data im-
proves the raw performance of the tree build, in
this case by a factor of two, due both to better
cache and TLB reuse. After reordering, the speed
is substantially less sensitive to page size, indicat-
ing that most of the benefits of large pages can be
obtained even on architectures where they are un-

36



Fig. 11.— The speed of a single tree revision.

available, simply by reordering the particle data
in memory.

While both build and revision clearly benefit
from parallel operation, neither yields the linear
scaling with processor count seen for the gravity
and SPH calculations. Instead, their scaled paral-
lel speedups saturate at factor of ∼ 11 and ∼ 16,
respectively, on 120 processors. Although we can-
not be satisfied by the saturation, we are at least
comforted by the fact that performance does not
actually decrease, a very real possibility for paral-
lel codes when communication costs become sig-
nificant.

Despite similar appearances, the factors limit-
ing parallelism in each case are not identical. For
large processor counts, the ultimate limiting fac-
tor affecting both routines is that latency between
a given processor and the data on which it oper-
ates is a function of data placement. It will be
both different for each processor and intrinsic to
the NUMA fabric of the system itself, so that even
when ostensibly equal amounts of work are given
to each processor, load imbalance develops due to
differences between the times required to load and
store data to and from memory. We believe that
data placement issues such as these are also the
source of the scatter in scaling seen especially in
figure 11 for processor counts > 24, as data distri-
bution among the processors and memory becomes
more dispersed and placements with some proces-
sor counts are more beneficial than others. Al-

though we have performed no systematic study to
verify this hypothesis, in a few, exploratory tests
we have noted significant timing differences be-
tween identical runs performed on different sets
of processors spread across different nodes in the
hypercube NUMA fabric. Such differences lend
support to our conclusion.

Tree construction suffers from two additional
limitations which, together with NUMA, con-
tribute roughly equal proportions to the overall
performance degradation. First, we estimate that
∼ 1 − 2% of the tree build cost remains serialized
due to unavoidable dependencies between differ-
ent units of work. Second, as tree construction
proceeds to higher levels, fewer and fewer nodes
remain to be shared among processors so that they
become progressively more starved for work, gen-
erating relatively large load imbalances, synchro-
nization and communication costs. These costs
become especially significant for highly inhomoge-
neous particle distributions, as in the case of the
evolved SPH test problem, because fewer nodes
are created per level, especially near the root. We
believe that although a few improvements could
be made to mitigate the effects of these limitations
somewhat, they will never be entirely removable.
Section 7.3.6 demonstrates however, that their ef-
fects will become less and less important for larger
simulations because a comparatively smaller frac-
tion of the build time is spent at the highest levels
of the tree, where work starvation is most severe.

7.3.5. Frequency of Tree Rebuilds

Combining the information in figures 7, 10 and
11, we calculate that a tree build or revision will
be, respectively, factors of seven and 100 faster
than a single gravity calculation on one processor,
and so will contribute little to the total simula-
tion time in serial and small scale parallel opera-
tion. Their contributions will become more signif-
icant in highly parallel simulations and when only
a fraction of the particles require force updates, as
when individual time steps are used.

As noted in section 3.6, the tree does not need
to be rebuilt after every timestep but can instead
be used for several in succession with only an up-
date of the node data to the current time, saving
computing resources better spent directly evolving
the particles. Of course, rebuilds must still occur
occasionally because particles move with respect

37



Fig. 12.— The time required for a series of time
steps of the N -body test problem, for which the
gravitational force calculation entirely dominates
the total. The solid curve indicates the times re-
quired for each of 30 time steps with no tree re-
builds, while the dotted curve indicates the times
required with a complete tree build spaced every
ten time steps.

to one another, causing their parent nodes to be-
come larger and larger. Larger nodes affect the
speed of both the SPH and gravity calculations
because more and more nodes must be examined
for acceptability, and more and more nodes must
be included in the multipole summations. In this
section, we attempt to determine the optimal fre-
quency of tree rebuilds.

When the code is used in global timestep mode,
the frequency for rebuilds can be determined eas-
ily based on the time required to update the sys-
tem immediately after a tree build as compared
to the time required after some number of time
steps have elapsed. We illustrate this slowdown
in figure 12, where the time for successive force
calculations is plotted as a function of the number
of time steps since a complete rebuild, during the
evolution of the N -body test problem with global
time steps. Over the course of 30 time steps, the
time required increases ever more rapidly as par-
ticles and nodes become more and more separated
from their initial nearest neighbor status. Enforc-
ing a tree rebuild every ten time steps returns the
calculation times again to their original high effi-
ciency. Since a full reconstruction of the tree re-
quires ∼ 30s on 8 processors of the Origin 3000 on

which this test was performed, and the time for
one update increases by an approximately equal
amount over 10 time steps, a reasonable spacing
between rebuilds is once per ∼ 5 − 10 time steps.

The question of how often to rebuild the tree is
not trivial when the code is used with individual
time steps because it is difficult to determine–on
a particle by particle basis–when a calculation re-
quires sufficiently more time that the cost of a tree
rebuild would be less than that of an update. It
would also be beneficial to have some process by
which the user would not be required to tune the
rebuild frequency for a given problem in a global
timestep calculation, but rather to have a single
parameter by which the rebuild/revise decision
could be made automatically. Since force calcu-
lations using the tree will be sensitive to the phys-
ical size of the nodes in the tree through the node
opening criteria, one such parameter can be de-
fined using the increasing physical size of clumps,
as defined in equation 6, as a proxy for the in-
creasing size of all of the tree nodes. This value is
required for other calculations and will therefore
allow the code to make a decision to rebuild the
tree at essentially no additional cost.

In figure 13, we show the clump size distribu-
tion, relative to their original sizes, after a num-
ber of time steps have elapsed since the rebuild,
for the same calculation shown in figure 12. After
10 time steps have elapsed, some clumps have ex-
panded to as much as twice their original radius,
after 20 steps, well over three times their original
radius, and after 30 steps, over four times their
original radius. Decreases in size also develop, in
this problem to about 80% of the original size.
The ratios are near log-linear in distribution, so
that specifying a given maximum ratio will be an
effective proxy for specifying the full distribution.
Noting from figure 12 that an increase in compu-
tation time per timestep of 30 seconds (about that
of one tree build), corresponds to a maximum in-
crease in clump radius of a factor of two, we can
conclude that triggering a rebuild when the size of
any clump changes its radius by a factor of two, we
will be able to automatically retain most efficient
calculations of the forces. Experiments on several
particle morphologies indicate that this factor is
comparatively insensitive to particle distribution,
though still other distributions may prove more
so, and may require another factor be used. Users

38



Fig. 13.— A histogram of the ratios of the physical
radius of a clump several time steps after the tree
build, to the value immediately after the build.
The solid curve shows the ratios at timestep zero
(i.e. all ratios unity), while the dotted, dashed and
long dashed curves show the distribution after 10,
20 and 30 time steps, respectively.

may change its value through a setting in a text
input file, read in by the code at run time.

7.3.6. Performance on problems of different size

So far, we have demonstrated the parallel scal-
ability of the code on problems of moderate size,
at times when all particles require force calcula-
tions. In practice of course, the code will be used
differently in two important respects. Simulations
will be run with different sizes than we consider
and they will be run using an individual time step
scheme, so that only a small fraction of the total
number of particles require updates at any given
time. Due to the unpredictability of load balance
and work distribution among time step bins, it will
not be possible to address the latter concern with
any generality. We can still gain some insight into
the scalability by looking at identical problems of
different size however. In this section, we examine
the sensitivity of the overall performance and the
parallel scaling of the code using six realizations
of the galaxy merger test problem at different res-
olution, and which include both SPH and N -body
particles, as defined in table 2.

Figure 14 shows the time required to perform
one complete calculation of each of the major com-

Fig. 14.— Time required to perform one grav-
ity calculation (solid), one SPH calculation (dot-
ted), one tree build (dashed) or tree revision (long
dashed), for an identical initial condition realized
with six different particle numbers. Points repre-
sent actual timings, while the lines represent a lin-
ear fits to the logarithms of each coordinate. The
scaling (i.e. the linear term in each fit) is indicated
adjacent to each. Lines in the upper left corner
represent scalings proportional to N2

p , Np log Np,
N1.09

p and Np, as indicated. Only three lines are
visible because the curves for the Np log Np and
N1.09

p proportionalities overlie each other.

ponents of the code on one processor of the Ori-
gin 3000. As expected from theoretical considera-
tions of the tree algorithm itself, proportionalities
for the gravity and SPH calculations are steepest,
with the slope for gravity corresponding exactly
to the value expected over this range for a curve
with tgrav ∝ Np log Np. The proportionality for
the SPH calculations is lower because, while the
tree traversals required for the neighbor searches
scale with Np log Np, calculations with the result-
ing lists of neighbors scale only proportional to
Np. Both the tree build and revision follow still
shallower proportionalities, so that as problem size
increases, their costs decrease relative to gravity
and SPH. As seen for the N -body and SPH tests
above, the absolute cost of the gravity calculation
is higher than any other part of the code, but be-
cause only ∼ 14% of the total particles in the six
Merger tests are SPH particles, the tree build re-
places SPH as the second most costly calculation,
with the tree revision an additional order of mag-

39



nitude cheaper than either. The excellent scaling
of each component over a factor of 30 in size indi-
cate that simulations of any size with VINE will
be possible with both predictable and affordable
cost.

Figure 15 shows the scaled parallel efficiencies
of each code component for each of the realizations
at different resolution. Even at comparatively low
resolution, the efficiency of the gravity calculation
is excellent. Only small deviations from linear
scaling are visible for the low resolution (270000
particles) run up to ∼ 32 processors. Above that
count the speedup continues to increase to the lim-
its of the machine, but no longer follows a perfect
linear relationship, ending in a ×50 improvement
on 120 processors. Each of the higher resolution
variants follows the same pattern, with the perfor-
mance knee shifted to progressively higher proces-
sor counts. For the highest resolution version, a
small deviation from linear performance becomes
visible only above ∼ 80 processors, dropping to
110 at the 120 processor maximum for the ma-
chine.

The curves for the SPH calculations also show
very good scaling up to ∼ 32 processors though,
as for the SPH test problems above, below that
achieved in the gravity calculation. Above 32
processors however, rather than continuing to im-
prove up to the limits of the machine, all of the
curves instead turn over and saturate near a factor
∼ 50. Also in contrast to the gravity calculation,
relatively little differentiation between the scal-
ings at different resolutions is visible. The plateau
appears to be due in part to the fact that only
∼ 15% of the total number of particles are SPH
particles and to the small total number of SPH
particles in these simulations. Both characteris-
tics increase the likelihood for load imbalance at
high processor counts. The scaling limits are im-
portant to quantify because, in some respects, the
fact that SPH particles are distributed irregularly
throughout the tree mimics the behavior of the
code when simulations using individual time steps
for each particle are run, and active particles are
distributed irregularly throughout the tree.

For both construction and revision scaling is
good up to ∼ 5 − 8 processors at all resolutions,
but saturates at higher levels of parallelism, as we
found in our tests in section 7.3.4. Above eight
processors, the curves for different resolutions be-

come differentiated from one another. The curves
for the tree build are relatively smooth functions
of processor count, and are well distinguished from
both their higher and lower resolution cousins.
Performance of the lowest resolution variant does
not increase beyond a factor ∼ 3 − 4 speedup,
but the saturation level increases in progressively
higher resolution variants, eventually to a speedup
of ∼ 12 for the highest resolution case. For still
higher resolution simulations, we expect this trend
to continue because a relatively smaller fraction of
the total will be spent associating nodes near the
root of the tree, where the total number of unas-
sociated nodes is small and parallelism ineffective.

The revision scalings display much more irreg-
ular patterns. For our highest resolution vari-
ant, scaling increases steeply to ∼ 16 processors,
then more shallowly to a factor ∼ 20 at the high
end limit of our study. Lower resolution variants
fall off at progressively fewer processors, but the
curves sometimes intersect each other and, in some
cases, actually decrease slightly before increasing
again. We attribute the irregularity to the fact
that the revision requires only a very small amount
of total time (typically much less than a second, es-
pecially for the lower resolution tests), so that sen-
sitivities to systematic effects such as data place-
ment in the NUMA hierarchy play a proportion-
ately larger role. Attempts to repeat a subset of
the timings appear to confirm this hypothesis, as
timings for different runs could differ by as much
as several tens of percent in otherwise identical
runs, done at different times on different distribu-
tions of processors.

Overall, these tests demonstrate that the code’s
efficiency scales very well both to very large and to
very small problem sizes. For small problems, per-
formance may no longer increase linearly beyond
∼ 30 − 50 processors, but in no case do we find
the overall scaling to decrease with additional pro-
cessors, even for very low resolution simulations
where even small load imbalance and interproces-
sor communication can become significant. This is
important for simulations utilizing individual time
steps for each particle because only a fraction of
the total complement of particles will require up-
dated force calculations at any given time.

40



Fig. 15.— Parallel scaling of the same calculations shown in figure 14 for realizations at each resolution.
The heavy solid line in each panel delimits perfect linear scaling. In order from high to low resolution, each
curve corresponds to the color black, red, green dark blue, light blue and magenta.

7.4. Performance on other architectures

The Origin 3000 architecture on which the tests
in sections 7.2 and 7.3 were performed is only one
of a number of shared memory systems on which
VINE can be run. It is also, at this writing, a re-
tired architecture for which no succeeding system
exists using the same processor, though the Altix
machine plays a similar role using Intel Itanium 2
processors and a somewhat similar interconnect
fabric to connect processors and memory. Other
large scale, shared memory parallel systems are
commercially available from IBM, Sun and HP.
Desktop machines with multiple processors have
also become common and we can only expect this

trend to continue to larger scales in the future
as machines with more processors, and processors
with more cores per chip, become commonplace.

In this section we compare the performance of
the code on a several hardware architectures and
compilers, referenced in table 3. Because many of
these machines are from different computer ‘gener-
ations’, a direct comparison of one processor type
against another will not be particularly meaning-
ful as an indicator of some overall best architec-
ture or processor, and readers are cautioned to be
mindful of this fact in making such comparisons.
On the other hand, correlated with user experience
of speedups expected between one generation and

41



the next within a single processor family, some
inferences may be justified. In any case, the com-
parisons will be useful as a relative indicator of
how the code performs on exactly the same prob-
lem across a wide variety of machines, possibly
assisting heavy users of the code in the selection
of one machine over another to which to commit
resources.

42



Table 3

Computer Architectures Tested

Machine CPU type Compiler Identifier

SGI Origin 3800 128× R12000 (400MHz) Mipspro 7.4.2 1
IBM p690 32× Power 4 (1.3GHz) xlf 9.1 2
AMD Opteron 2× Opteron (2.4GHz) Pathscale 2.3.1 3
IBM p575 16× Power 5 (1.65GHz) xlf 9.1 4
SGI Altix 350 56× Itanium 2 (1.5GHz) Intel 9.1.33 5
SGI Altix 350 (GRAPE-6A related tests) Intel 10.0.25

43



Fig. 16.— Calculation rates for the gravity, tree
build and revision calculations on the N -body test
problem, and the SPH initial condition, running
on a single processor of the specified type. Each
plot is ordered from left to right according to in-
creasing performance of the gravity calculation.
The SPH evolved condition (not shown) follows
the same pattern as does the initial condition, at
an overall speed ∼ 10% slower than the initial con-
dition.

7.4.1. Serial performance

In figure 16, we show calculations rates for sin-
gle processor tests, on five different processors
for each major component of the code. For the
gravity calculation, the clear ‘winner’ is the In-
tel Itanium 2 processor, with calculation rates
of a factor 50% faster than its nearest competi-
tor, the Power 5. Its performance is also a fac-
tor ∼ 5.5 faster than the R12000 processor on
which the detailed performance analyses above
were made. For all other components, perfor-
mance of the AMD Opteron is highest, at a factor

∼1.4 faster than its nearest competitor (Itanium)
for SPH and ∼ 4.1 times faster than the R12000.
Comparable figures apply to the tree build and
revision as well.

A number of features of figure 16 are of interest.
First, the superior performance of the Opteron is,
to some extent, to be expected since it is more
recently made than any other processor in our
sample. The fact that its performance on the
gravity calculation falls between that of the two
Power processors is a significant drawback to its
performance overall because of its large total cost
for most simulations of interest in astrophysical
contexts. Also, although its serial performance
is very good, no machines are currently commer-
cially available which exploit the high performance
in large scale shared memory configurations, so
the higher serial performance may only be useful
for comparatively small simulations, where highly
parallel operation is not required.

The raw performance differences between the
Power 4 and Power 5 processors are remark-
ably small, corresponding roughly to differences
in clock speeds between the two processors. In
comparison, differences between their performance
on the well known SPEC CPU20002 benchmark
suite would lead one to believe that improvements
nearer a factor two or more were to be expected.
Also, their performance is disappointing on the
SPH and tree calculations relative to the much
older R12000 processor, at factors of only ×2 and
×2.5 faster, respectively, though the gravity cal-
culations do somewhat better at factors of ×2.5
and ×3.6.

When we compare the rates derived from the
merger test simulations done in Vine1 with those
shown in figure 16, we notice an important discrep-
ancy. The rates for the merger test in Vine1, of
∼ 70 kparticles/s for 8 Itanium 2 processors, are
far lower than would be expected from a simple
extrapolation of the ∼ 40 kparticles/s for one Ita-
nium 2 processor shown here. The rate differences
appear to be due to two effects. First, the mass
distributions are not the same. While the N -body
test problem a spherically symmetric system with
r−1/4 density profile, the merger simulation con-
sists of two more or less separated galaxies at var-
ious times during their merger evolution. Second,

2http://www.spec.org

44



and more importantly, the merger simulation con-
sists of several types of particles, each with their
own masses and gravitational softening lengths.
When larger softening lengths are used, the node
size of all parent nodes increases proportionally
(see equations 5 and 6), and will therefore result
in many additional node examinations during the
tree traversal, and the addition of many additional
nodes to the interaction lists themselves. The rate
differences between these different configurations
do not affect the conclusions in Vine1, that VINE
is ∼ 4× faster than Gadget-2 however, since the
speed comparisons for that test were done using
exactly the same particle configurations for each
code.

As is to be expected given its much greater
age relative to the others, the performance of the
R12000 processor falls substantially behind that
of all the other processors in our sample. This
is important because the performance character-
istics of VINE discussed above will be better on
architectures commonly available today in propor-
tion to the speedups seen in this plot. It is of
some interest that the magnitudes of the speed
increases are somewhat smaller than might be ex-
pected from a naive application of Moore’s Law.3

Some deviations from the expected speedups may
be due simply to hardware features that VINE ex-
ploits more fully on one processor family rather
than another, or on one workload rather than an-
other. The fact that some of VINE’s calculations
speed up more than others across different proces-
sor types illustrates clearly that no single archi-
tecture dominates all aspects of the calculations
required for astrophysical simulations.

7.4.2. Parallel scaling

Figure 17 shows scaled parallel efficiencies for
the four major components of the code on several
architectures. The parallel scaling of the gravity
calculation is near linear with processor count for
all architectures tested, up to the limit imposed by
the size of the machine itself. Of the four archi-
tectures, performance on the Altix fared compar-
atively least well, falling to ‘only’ ×29.5 and ×44

3Although by its actual definition, Moore’s Law refers to a
time scale for doubling the component density per proces-
sor, we apply it here in its commonly misused form as a
speed doubling every 18-24 months.

speedups out of 32 and 48 processors on the two
largest tests, respectively. In comparison, the Ori-
gin 3000 and Power 4 based p690 machines gave
speedups of 31.5 and 31.1, respectively, when run
on 32 processors.

The scaling of the SPH calculations is also ex-
cellent, with near linear speedup in the SPH cal-
culations on three of the architectures tested, to
the limits of each machine. Performance on the
Altix is an exception however, deviating from lin-
ear speedup near ∼ 8 − 16 processors and eventu-
ally dropping to a comparatively poor factor ×22
speedup on 48 processors. Much larger disparities,
among all of the systems in our test, are present
in the tree build and revision procedures. The
Power 4 based p690 realizes the best performance
on both, reaching speedups of ∼ 9 and ∼ 16 on
16 or 32 processors, respectively, while the other
three realized speedups between ×5 and ×10, even
when run on more processors. Parallel scaling of
the tree revision on the Altix machine saturated
at an even lower plateau of a factor ∼2 speedup,
no matter how many processors were used.

Of some interest are the differences in scaling
between the Power 4 and Power 5 based machines
and, to a lesser extent, also between the Origin
and Altix machines, due to the architectural sim-
ilarities between each pair. In fact, little corre-
lation can be seen in the performance between
the two pairs, even though the code and data are
identical. We have not attempted to explore the
origin of the performance disparities, but never-
theless can make some conjectures, based on the
kinds of calculations made in each of the different
procedures. Specifically, that the differences are
due to the complicated interactions between the
processors and the memory they use. Procedures
with a small memory footprint, even if they con-
sume huge amounts of processing time as do the
gravity and SPH calculations, scale consistently
well. Procedures that cycle through large volumes
of memory but perform few calculations, as do the
tree build and revision, scale less well and incon-
sistently across architectures.

It is of some disappointment that the Altix ar-
chitecture, theoretically scalable to higher proces-
sor counts than any other, does not perform as
well as the others on the latter workload, since a
non-negligible fraction of VINE’s total workload
includes such operations. As an example of the

45



Fig. 17.— Parallel scaling of the major components of the code, for a number of different architectures. Tests
of the SPH evolved condition mirrored the results of the initial condition and are neglected here. The curves
correspond respectively to the SGI Origin 3000 (solid), IBM p690 (dotted), IBM p575 (short dashed) and
SGI Altix (long dashed). Curves for each architecture extend different distances along the x axis depending
on the size of the machine on which the tests were made.

consequences that will result in practice, we point
out the scaling behavior of the SPH calculation.
Examination of its various components on Altix
show that the density and hydrodynamic force cal-
culations, which together account for ∼ 98% of the
total time on one processor, and which do a large
amount of work using a small volume of memory
accessed repeatedly, do in fact scale linearly with
processor count. On the other hand, while other
components, such as the equation of state calcu-
lations or the smoothing length derivative which
each cycle through a large volume of memory per-
forming only a few operations per particle, require
only ∼ 2% of the total time on one processor. their

parallel performance is quite poor, in some cases
actually decreasing with processor count rather
than increasing. The combination of the two com-
ponents leads to the below linear parallel scaling
seen in figure 17 and, more generally, to similar
features in the overall scaling of entire simulations.
Fortunately, it appears that other architectures do
not suffer from comparable difficulties.

The comparisons in this section neglect several
architectures and processors entirely, largely be-
cause we were unable to secure time on such ma-
chines, and because of simple limitations in the
amount of effort required to perform the desired

46



tests. Of the machines in our comparison, the best
overall serial performance for users of VINE will
be obtained on machines using Itanium 2 proces-
sors, especially for simulations of purely N -body
systems. Due to their excellent performance in all
other components, AMD Opteron processors may
also provide comparable performance in simula-
tions with both self gravity and hydrodynamics.
No tests of the parallel scalability of machines us-
ing the AMD processors were performed because
highly scalable, shared memory machines using
AMD processors are not yet commonly available.
Best overall performance will be achieved when
using machines based on Power processors.

7.4.3. Effect of large pages on other architec-
tures, and difficulties associated with their
use

In sections 7.3.2, we demonstrated the large
sensitivity of the code’s speed to the hardware
page size on the Origin 3000 architecture using
MIPS R12000 processors. In general, we cannot
expect the same sensitivity across all processor
families because some include circuits to calculate
TLB entries directly, while others, like the R12000,
compute new entries in software by the operating
system. In this section, we explore the sensitivity
of the code to page size on the Power 5 processor,
in order to demonstrate that the sensitivity is not
specific to a single processor family, and to demon-
strate that the performance optimizations we have
made also provide benefits on other architectures
as well. For reasons we discuss below however, we
point out to readers that direct speed comparisons
with results in other sections should not be made,
because the tests were run at a different time and
different settings were used to produce the results.

Figure 18 shows gravitational force calculation
rates obtained from simulations run using Power 5
processors, as a function of processor count. As
with MIPS, performance of the non-cache blocked
version of the code is greatly enhanced when large
pages are available and are used, in this case by a
factor 1.65. The differences decrease to only ∼ 5%
in the cache blocked versions, where we expect the
effect should be minimized. We conclude that the
sensitivity of the code speed to hardware page size
is not specific to any one processor family, but re-
flects a general property of the code itself. The
magnitude of the sensitivity will vary somewhat

from family to family, depending on the imple-
mentation of the TLB refill process itself. The
benefits seen on the Origin architecture may be
particularly large due to this fact, because MIPS
processors require software intervention for their
TLB refills.

In contrast to the R12000 processor, the differ-
ence between non cache blocked and cache blocked
versions with large pages is also substantial. Cache
blocking improved performance by a factor ∼ 1.6
on the Power 5, compared to only ∼ 17% on the
R12000. As we expect, both processors improve
by more substantial margins when small pages are
used, so that the both the large and small page
variants obtain similar performance. We conclude
that other sources of memory latency are much
more significant on the Power architecture than on
the Origin 3000, though we have not attempted to
isolate the exact origin more fully.

Given our conclusions, it is important to note
as well that the ease and flexibility of actually
using large pages can vary widely between archi-
tectures, and even between operating systems us-
ing the same architecture (e.g. Linux or AIX on
Power processors). On the Origin 3000 architec-
ture, where the sensitivity to page size was ini-
tially seen as the code was developed, use of large
pages was straightforward and we were regularly
able to test the effects of various alternative opti-
mizations on the code speed. Even on this system
however, consistently obtaining the same page dis-
tribution from run to run (when the desired page
size is unavailable, the operating system falls back
to other page sizes) was frequently difficult or im-
possible, yielding benchmark data contaminated
by one or more data with a mixed distribution of
page sizes. To minimize such disruptions in tim-
ings discussed in this work, we monitored the page
sizes used in the run with system tools designed for
the purpose, and reran tests where contamination
was unmistakable.

On other architectures, such as the IBM Power
series for example, special coordination with sys-
tem administrators was required to make any tests
at all, because of instabilities introduced into the
machine and operating system by the use of large
pages. Although we were able to perform the se-
ries of preliminary tests illustrated in figure 18,
large page use in production was disabled on the
machines due to the resulting unacceptably se-

47



Fig. 18.— Gravitational force calculation rates obtained using VINE on the Power 5 architecture. As in
the lowest two panels of figure 8, the left panel shows the performance without the cache blocking algorithm
and the right panel shows performance with cache blocking. The solid and dotted curves correspond to runs
performed with 16MB pages and with 4kB pages respectively. Scaled parallel efficiency is shown in the upper
left corner of each panel for the 16MB (top) and 4kB (bottom) results, out of a machine maximum of 16.

vere instabilities in the operating system that re-
sulted from their use. For this reason, later perfor-
mance tests using identical code settings as were
used in figures 7 and 8 were not possible. On
still other systems, large pages can only be uti-
lized if the code is rewritten to take advantage of
special memory allocation calls, such as those im-
plemented in Linux through the ‘hugetlbfs’ infras-
tructure. We did not pursue this option, due to its
cost both in programming time and to portability.

Fortunately for users of VINE both on the Ori-

gin architecture and on others where large page
use is more restricted, the optimizations described
in this paper demonstrate that a properly imple-
mented code may realize many of the benefits of
large pages, even when only small pages are avail-
able on the machine where the code is run. Per-
formance will still be less than optimal when the
code is used in its individual timestep mode how-
ever, because the effectiveness of the cache block-
ing optimization will be reduced.

48



7.5. Performance of the GRAPE+tree op-

tion in VINE

As we continued to develop VINE, more ad-
vanced versions of GRAPE hardware became
available and modules implementing interfaces to
them were added to VINE’s code base. In this
section, we discuss the performance of the com-
bined GRAPE+tree option in VINE, in which we
use tree traversals to reduce the total number of
nodes needed to determine the force on a given
particle, but send those nodes to a GRAPE co-
processor board for calculation rather than using
the host processor itself.

We use several variants of our N -body test
problem, each at different resolution, and each us-
ing the optimal maximum bunch population for
that problem size as discussed in section 7.3.1. In
addition, we test the speed with a 221 particle ho-
mogeneous sphere configuration, which we have
configured to have identical characteristics to the
same configuration discussed in Fukushige et al.
(2005, hereafter FMK05). The system of units
is chosen such that M = G = 1 = −4E where
M is the total mass, G the gravitational constant
and E the total energy. The sphere has a cut-
off radius of rmax = 22.8 and is modelled with
N = 2097152 particles, using Plummer softening
with ǫ = 7.6×10−3. As in FMK05, we use a single
GRAPE-6A (‘Micro-Grape’) board, which in our
case was attached to an SGI Altix computer with
1.5 GHz Itanium 2 processors. All tests here have
been done on a single processor. Reference cal-
culations, against which force accuracy are mea-
sured, were performed using either using VINE’s
direct summation mode on the host, or alternately
with VINE in tree/host mode using a geometric
MAC setting of θ = 10−16. Both cases use double
precision floating point values, as is standard in
VINE.

7.5.1. Performances as a function of accuracy
and problem size

Figure 19 shows the rate of gravity calculations
per second as a function of the 50% (i.e. median)
and 99% error magnitudes, for the tree/host com-
bination using the Gadget and geometric MACs
and the GRAPE-tree combination using only the
Gadget MAC. As we saw in figure 3 for parallel
calculations on the Origin architecture, using the

Gadget MAC allows superior performance relative
to the geometric MAC at the same force accu-
racy, both for the tree/host combination and the
GRAPE/tree combination. In no case do error
limits rise above 1-2%, even for the most liberal
MAC settings, for which several points lie essen-
tially on top of each other in the figure. Only for
the homogenous sphere test, do the error levels
rise to this level–for the other two tests, the up-
per limits are reached at a factor of 2-4 smaller
errors. The overall trends for the tree/host cal-
culations closely resemble those seen in figure 3,
except for a smaller difference between the behav-
ior of the two MACs in the homogeneous sphere
problem here, and the SPH initial condition above,
presumably because of the relatively smaller value
of the softening length in the present case. Quite
different behavior occurs in the GRAPE-6A+tree
curves, expecially with the Gadget MAC, in which
an essentially flat performance plateau exists over
nearly an order of magnitude in error limits.

Rates as high as 120kparticles/s are obtained
for the homogeneous sphere configuration and
>50kparticles/s for the two N -body test prob-
lem configurations.4 In every case, the tree/host
calculation rates rise to values well above those
of the GRAPE-6A+tree rates for the same error
limits. Also, the GRAPE-6A+tree curves produce
much higher error limits for a given MAC setting
than do the tree/host versions, ultimately yield-
ing error limits a factor 2-3 larger at the most
liberal MAC settings. The differences are the con-
sequences of two effects which may partially, but
incompletely, offset each other. First, while the
tree/host calculations includes quadrupole contri-
butions in each interaction, the GRAPE-6A+tree
calculations include only the monopole term, so
that difference of one order in truncation error
in the multipole expansion exists. Larger errors
at a given setting are expected as a result. Sec-
ondly, many more particle-particle interactions
will typically be included in the GRAPE-6A+tree
calculations because bunch sizes optimal for this
method are much larger than the optimal clump
sizes used in the tree/host method. Smaller er-

4Note however that the rates for the 7M particle N-body
test problem rise some 10% higher here than in figure 16
because the present calculations use Plummer softening, in
order to compare more directly to the GRAPE calculations,
rather than fixed softening length spline softening.

49



Fig. 19.— The calculation rate for gravitational forces on particles in a homogeneous sphere configuration
(left panels) and in the 2 and 7 million particle N -body test problems (center and right panels, respectively).
Top panels show rates for which 99% of the particles have error magnitudes less than that shown, while the
bottom panels show rates at which 50% (i.e. the median) of particles have errors less than that shown. The
solid and dotted curves represent the rates using the geometric MAC and Gadget MACs respectively, both
using VINE configured to perform tree+host calculations. The long and short dashed curves represents VINE
configured to perform GRAPE-6A+tree calculations using the geometric and Gadget MACs, respectively.
Points on each curve represent settings of θ = (0.1, 0.2, 0.4, 0.6, 0.8, 1.0) for the geometric MAC tests and
10−9 ≤ θ ≤ 1.0 in decade increments for the two calculations with the Gadget MAC. The single asterisk
in each panel shows the speed and accuracy locus of the GRAPE-6A running in direct summation mode.
Labels on the x axis define the exponent of the force accuracy only, rather than the full numerical value, in
order to avoid confusion.

rors at a given setting are expected in this case,
since the particle-particle contributions contribute
nothing to the total error. Taken together, clearly
the loss of accuracy due to the lower truncation
order dominates.

For error limits similar to those produced with

the tree/host calculation using the Gadget MAC,
for which we use the θ = 5 × 10−3 setting derived
in section 7.2.3 as our reference, the GRAPE-
6A+tree calculation requires a setting of θ ≈
1 × 10−4. Coincidentally, both settings produce
the most restrictive accuracy limits for negligible
decreases in performance below more liberal set-

50



tings. For the geometric MAC, equivalent accu-
racy in the tree/host calculation requires a setting
of θ ≈ 0.75, while the GRAPE-6A+tree tests re-
quire a value θ ≈ 0.5. When used in VINE with
these settings, the tree/host option in the N -body
tests are a factor of about two faster, producing
error limits below a few ×10−3 for 99% of the par-
ticles, while in the homogeneous sphere test, the
tree/host calculations are nearly a factor of four
faster.

Though computationally costly, we have ex-
tended the high accuracy end of each error curve in
figure 19 to relative errors as small as 10−8−10−7

for the tree/host settings. Although the set-
tings for which these limits would be obtained
would rarely (if ever!) be used in practice, they
serve another purpose here. Namely, they allow
us to make comparisons between VINE, used in
tree/host mode, at the same accuracy as GRAPE-
6A processors, used in direct summation mode.
Calculations rates for VINE used in tree/host
mode with a setting of the Gadget MAC of θ ∼
10−9 typically fall within a factor of ∼ 2 − 3 of
the calculation rates for the GRAPE-6A proces-
sor used in direct summation mode.5 In each
case, GRAPE-6A in direct summation mode is the
faster option and provides superior absolute per-
formance. It is of interest to note however that
the performance advantage is not overwhelmingly
large and, when factors such as code complexity
and hardware cost are considered, becomes even
less so. Assuming host and GRAPE processor are
of equal cost, performance when using GRAPE
must be at least twice that of the host alone in
order to provide a more cost effective solution to
a given problem. By this metric, direct summa-
tion using GRAPE-6A VINE and host/tree VINE
running in parallel on 2-3 host processors, provide
roughly equivalent performance.

As a final test of the performance of VINE
with GRAPE, we compare the calculation times

5Note that because calculations on the GRAPE-6A are done
using fixed point arithmetic, with some intermediate oper-
ations performed with fewer than the full 64-bits expected
on a host processor (Makino et al. 2003), the error limits
determined for the GRAPE-6A typically lie near values of a
few ×10−8, rather than ∼ 10−15 expected from double pre-
cision floating point limits standard on the host processor.
Such direct summation calculations on the host, performed
in order to obtain reference values for the force calculations,
yield rates of ∼ 20-30× slower than the GRAPE-6A.

Fig. 20.— Time required to compute gravitational
forces of all particles on each other as a func-
tion of problem size, for three alternative calcula-
tion methods employed in VINE. The three lines
correspond to the time required for the GRAPE-
6A direct summation option (solid), the GRAPE-
6A+tree option (dashed) and the tree/host option
(dotted). Each line is a linear fit to the times
defined by the points immediately adjacent to it.
The slope of each fit is included next to each line.

obtained by using the code in GRAPE-6A di-
rect summation mode, in GRAPE-6a+tree mode
and tree+host mode as a function of the size of
the problem, again using variants of the N -body
test problem. Figure 20 shows the time required
to compute gravitational forces with VINE us-
ing GRAPE-6A direct summation mode, GRAPE-
6A+tree mode and host+tree mode, each as a
function of the number of particles in our N -
body test problem. Times for the latter two vari-
ants are derived using the settings defined above
which, as nearly as possible, reproduce the er-
ror distributions with similar accuracy constraints.
As we expect from basic theoretical considerations
of the costs of directly summing the gravitational
forces of particles on each other, the slope of the
GRAPE-6A direct summation lies very near its
predicted value of two. The small deviation be-
low the expected slope is readily explainable if we
account for the communication costs of sending
and receiving information between the GRAPE-
6A and the host. While negligible at large prob-
lem sizes, they account for some 5% of the total
time for the smallest problem size.

51



Of greater interest are the two other curves, for
GRAPE-6A+tree and for tree/host. While the
slope for the tree+host calculation falls quite near
the expected N log N behavior (see also section
7.3.6 and figure 14), the slope for the GRAPE-
6A+tree variant lies well below it–below even a
linear proportionality. While it seems paradoxical
to combine an algorithm whose performance is for-
mally O(Np log Np) (i.e. tree traversal based force
calculations) with another whose performance is
formally O(N2

p ) (i.e. direct summation) and ob-
tain one whose performance is better than O(Np),
the paradox is readily explainable. Due to the cal-
culation speed of GRAPE hardware, communica-
tion costs dominate if the number of calculations is
not too large. The turnover towards the expected
O(N2) scaling takes over only for interaction lists
longer than a few 104. As will be shown below
in section 7.5.2, VINE’s tree traversals reduce the
number of interactions per particle to well below
this limit and are extremely fast in and of them-
selves, so we are clearly in a communication domi-
nated performance regime. This conclusion is also
confirmed more directly by measurements of the
portions of the calculation in which communica-
tion occurs. Formally, and as predicted by argu-
ments in Athanassoula et al. (1998); Kawai et al.
(2000) and others, the communication dominated
regime should scale linearly with problem size, in
contradiction to our finding. We note that their
arguments neglect the possibility that the opti-
mal bunch population will change as a function of
problem size and, though we have made no spe-
cific investigation of the sensitivity of scaling to
this parameter, we make the tentative conclusion
that this factor is responsible for the effect we see.

At all problem sizes in our study, the perfor-
mance of the tree/host calculation exceeds that
of both the GRAPE-6A direct summation, and
the GRAPE-6A+tree option in VINE. Given the
clearly different scaling behavior of the two meth-
ods however, this statement will not remain true
for all problem sizes. The magnitude of the per-
formance difference, even for the largest problem
sizes in our study, indicate that the crossover point
lies at problem sizes of several tens of millions of
particles, a scale at which other factors, such as
parallel operation of the code, will play a much
larger role in determining the optimal computa-
tional method. Superior performance of a tree-

based method over that of direct summation is
more or less to be expected for all but the small-
est problems of course, since the algorithms and
the accuracies obtained from them are so differ-
ent. On the other hand, superior performance of
the tree/host calculations over the GRAPE/tree
calculations in VINE may not be as readily ac-
cepted, since GRAPE hardware is specially de-
signed and optimized to be an efficient gravita-
tional force solver and, as discussed in FMK05,
the GRAPE-6A hardware specifically for opera-
tion in conjunction with tree based methods. The
excellent performance of VINE in tree/host mode
demonstrates that careful attention to details of
code optimization can overcome such advantages.
We caution however, that before concluding that
VINE in tree/host mode provides a equal or better
alternative to the use of GRAPE hardware, sev-
eral other factors must be accounted for, each of
which will be addressed in the next section.

7.5.2. Reconciling inconsistencies between the re-
sults of our tests and those of Fukushige
et al. (2005)

In section 7.5.1 we found that the performance
of VINE’s GRAPE-6A+tree combination was sub-
stantially slower than that using its tree/host com-
bination at the same accuracy. A closer examina-
tion of the timings reveals that the performances
is also substantially slower than that quoted in
FMK05 as well–while they quote timings of ∼ 15-
20 s for force calculations in the homogeneous
sphere configuration, our best times were no better
than ∼ 72 s. Before concluding that force calcula-
tions using VINE on a host processor are indeed
faster than those using VINE in combination with
GRAPE-6A or, more generally, any other code in
combination with GRAPE, we must understand
the origin of the differences between their timings
and our own.

Since communication costs dominate the com-
putation rate, the most obvious possible explana-
tion of the discrepancy is that VINE requires a
far larger data volume per interaction to be trans-
fered to the GRAPE than does the code used in
FMK05. Here, we show that differences in data
transfer volumes are in fact responsible for es-
sentially all of the measurable performance differ-
ences. They originate in two important differences
between VINE and the FMK05 code: the total

52



number of nodes sent to the GRAPE board for
one force calculation, and the volume of data sent
per node.

We discuss the latter difference first. The data
required for the GRAPE-6A to compute the force
due to a given source node minimally include the
three components of its position and its mass. In
addition, the GRAPE-6A also requires a node in-
dex, to avoid potential self interactions between
source and sink nodes, a destination board iden-
tifier and a memory address to define where the
node will be stored on that board. VINE utilizes
the ‘g6a’ communication library included as the
software component of the GRAPE-6A distribu-
tion. Communication done using this library also
transfers three components of velocity for each
node as well as a number of data related to the
derivatives of acceleration, which were saved from
calculations at previous time steps. In total, 18
words (72 bytes) of data are transfered per node
using this library, though the library calls actually
used in VINE set the values of many quantities to
zero.

In contrast, an alternate library, refered to in
the distribution as the ‘g65’ library, provides an
emulation layer for codes written to use calls to a
previous generation library distributed with the
GRAPE-5 hardware. Most significantly in the
present context, this library requires that only the
minimal set of data be transfered to the GRAPE-
6A for each node, and uses reduced precision for
the data that are sent so that the communication
cost is reduced to 6 words (24 bytes) per node.
In spite of several independent attempts by two
of the present authors, we were unable to success-
fully implement code in VINE to take advantage of
the emulation library, although code successfully
interfacing directly with the GRAPE-5 library is
known to function correctly in VINE. Our tests
therefore reflect the higher costs of the full ‘g6a’
library, with its comparatively inefficient commu-
nication. In contrast, tests done in FMK05 imple-
mented code to call the emulation library (2007,
T. Fukushige: personal communication), and so
reflect a communication cost per node sent which
is three times smaller than our own. Differences
in communication cost translate to a factor some-
what less than three in speed, because while the
costs of tree traversals on the host and computa-
tion on the GRAPE-6A are comparatively small,

they are not entirely negligible. We will discuss ad-
ditional implications of this important difference
below.

Even accounting for the difference in data vol-
ume per node sent, inconsistencies in timings re-
main between our tests and FMK05. The remain-
ing factors for which we have not accounted are
differences in the total number of nodes transfered
by each code. Is the total number of nodes sent
to the GRAPE in our tests much larger than in
the tests performed in Fukushige et al. (2005)?
Unfortunately, this question is difficult to answer
with precision because the tree construction and
traversal algorithms in our code and theirs are
quite different. We cannot expect the interac-
tion list lengths obtained for the force calculation
on a given bunch to be similar, nor can we ex-
pect the average bunch populations to be identi-
cal. While one algorithm may produce shorter in-
teraction lists, it may also produce much different
force accuracies as a consequence, or may require
many more total nodes be sent to the GRAPE
because the bunches themselves are not as large.
Fukushige et al. (2005) provide timing data only
as a function of the (in their case, geometric) MAC
setting itself, rather than the accuracy limits pro-
vided by that setting. Therefore, comparisons of
similar calculations cannot be made. Neverthe-
less, we will be able to draw some important con-
clusions from the analysis, so we will proceed.

Figure 21 shows the average length of the in-
teraction lists and computation time, each as a
function of the 99% limit on force accuracy, us-
ing the Gadget MAC. Values for the geometric
MAC are larger and are not shown. If we as-
sume that the near flat performance plateau at
and above our recommended Gadget MAC setting
of θ = 1 × 10−4 corresponds to a similar feature
in figure 5 of FMK05, between θ ≈ 0.7 and θ = 1,
using a geometric MAC, then we may gain some
insight into the performance differences by com-
paring values derived from our figure and theirs.

For both configurations, the average interaction
list lengths at the most liberal MAC settings be-
gin near 3850 and 4650 nodes per bunch for the
homogenous sphere and N -body test problem, re-
spectively. The lengths increase some 10-20%, to
near 4750 and 5280 nodes per bunch at our rec-
ommended MAC setting and thereafter increase
much more rapidly, similar to the behavior seen in

53



Fig. 21.— Top panel: The average length of the
interaction list for each bunch sent to the GRAPE-
6A for the homogeneous sphere and the 2M par-
ticle N -body test problem, each using the Gadget
MAC with the same settings as were used in fig-
ure 19. Bottom panel: the time required for a full
force calculation on all particles for the same con-
figurations. Solid curves characterize the homo-
geneous sphere configuration, while dotted curves
define the 2M particle N -body test problem con-
figuration. The circled points in each curve de-
note the location defined by the MAC setting of
θ = 1 × 10−4, recommended above.

FMK05. In comparison to the values of ∼ 3200
nodes per bunch quoted for their recommended
geometric MAC setting of θ = 0.75, ours are some
∼50% larger. Also, in comparison to their aver-
age bunch population of 836 (obtained from their
Table 2), ours are smaller, near 600 particles per
bunch. In combination, the two quantities de-
termine the total number of nodes sent to the
GRAPE-6A, and a simple calculation leads to the

result that VINE requires slightly more than twice
the number of nodes be sent to the GRAPE-6A
than does the code used by FMK05.

7.5.3. Final notes on GRAPE+tree performance
in VINE

Naively multiplying together the factor of ∼ 2
difference in node count sent to the GRAPE-6A
by VINE with the near factor of three difference
in data volume per node, we arrive at a potential
speed difference of a factor of as large as ∼ 5-6
between the GRAPE-6A+tree code used in VINE
compared to that in FMK05. This value is quite
consistent with the differences in overall timings
at the fastest rates quoted in their work and ours,
though ambiguity remains regarding timing com-
parisons for forces computed to greater or lesser
accuracy. This consideration may be of some sig-
nificance because of our finding in section 7.5 that
the geometric MAC setting of θ = 0.5 is required
to obtain force accuracies similar to those found
for optimal settings in VINE with the Gadget
MAC. Calculation rates derived from the FMK05
analyses decrease by a nearly factor of two with
this setting as compared to their optimal rates.
In the absence of performance tests compared at
the same accuracy, we can make no more defini-
tive statements comparing the true relative per-
formance of the two codes.

Nevertheless, we must conclude that as cur-
rently implemented in VINE, the GRAPE+tree
option is not optimal, due to the inefficient com-
munication arising from our use of the g6a library.
Users who wish to take full advantage of GRAPE-
6A hardware with VINE may be well advised to in-
corporate appropriate modifications to either the
VINE source code or the g65 emulation library, to
enable its successful use. Such modifications have
not been a high priority in our work because of the
comparatively good performance of the tree/host
option. Assuming an ideal factor of three perfor-
mance enhancement using the reduced communi-
cation emulation library, the relative performance
compared to VINE in tree/host mode favors the
use of GRAPE-6A+tree by only ∼50%–a factor
much smaller than can be had by simply running
the same job on two or more processors in parallel.
Such parallelism is highly desirable for the simu-
lations most commonly run in our scientific work,
because they are typically much larger than can

54



be completed within the short turn-around time
spans required for maximum scientific productiv-
ity. They also typically include physical processes
(e.g. hydrodynamics with SPH) beyond gravita-
tional effects, which of course cannot utilize the
GRAPE hardware but can be efficiently paral-
lelized on the host.

We are hopeful that VINE will be able to
demonstrate speedups when using the GRAPE+tree
combination in conjunction with future GRAPE
hardware currently in development, such as
GRAPE-7, as these use faster versions of the PCI
bus interface for the data transfer.

8. Summary

In this paper we have described the algorithms
used in our particle based numerical code VINE,
the optimizations we have made to those algo-
rithms to improve their performance on micropro-
cessor based computers and finally, a number of
benchmarks designed to illustrate the benefits of
each optimization in the most costly calculations
required for simulations of astrophysical systems.
VINE is written in standard Fortran 95, and is
known to compile and run without modification
on a variety of common hardware platforms, from
small scale desktop workstations to large scale
shared memory parallel supercomputers, on which
it realizes excellent performance both in serial and
parallel operation. It includes options to model
a number of basic physical processes commonly
required in models of astrophysical systems, and
has been designed to be extensible, so that includ-
ing additional physical processes in models will be
comparatively straightforward.

Although we believe that many members of
the computational astrophysics community would
benefit from using VINE as an important or pri-
mary component of their computational tool box,
we recognize that others with substantial invest-
ments in other codes might prefer to continue
working with them instead. We believe that such
users will not find great difficulty in either port-
ing their physical models to VINE and using it as
an alternative to verify or otherwise check results
from their own codes, or in modifying their codes
to include many of the optimizations described
here, providing benefits of similar magnitude.

8.1. Additional Optimization

VINE is very well optimized for high perfor-
mance and includes many features, but it is a pro-
gramming truism that no code is ever complete.
VINE is no exception, and there are a number of
areas where it could be made more flexible, or its
performance could be improved. In Vine1, we dis-
cussed additional optimizations that may benefit
the code at a comparatively high level, such as
changes to the integrators used. Here, we discuss
a number of additional, lower level optimizations
that we believe may be beneficial to VINE users.

The two most costly components of VINE are
the gravity and SPH calculations. For gravity,
the optimizations most likely to be beneficial will
be from including additional terms in the multi-
pole summation, which is currently truncated at
quadrupole order. Including terms to octupole or
hexadecapole order would increase the accuracy
of the calculation for a given MAC setting, but
would also increase the cost of the calculation both
in memory and in time. Indirectly, the additional
terms will increase the cost to update the nodes in
a tree revision, already a comparatively inefficient
component of the code. In order to be beneficial,
increased accuracy must be both necessary for the
calculation and require less total cost to achieve
than with the present code used with a more re-
strictive MAC setting. Because models of many
astrophysical systems require force accuracies of
only 0.1–1%, for which the speed of the calcula-
tion is already at its maximum, the actual benefit
will be minimal. To date, we have therefore not
implemented such higher order terms. Salmon &
Warren (1994) demonstrate that for higher accu-
racy requirements, including higher order multi-
pole moments will be beneficial and when such
accuracy is required, we would recommend their
inclusion.

We saw in section 7.3.6 that the parallel per-
formance of the SPH calculations saturated at a
factor ∼ 50 speedup in the Merger test simulations
in which both SPH and N -body particles were
present. In part, we attributed the comparative
performance loss, relative to the pure SPH test
problems, to the fact that both SPH and N -body
particles shared the same tree structure, with only
a small fraction of the total modeling the gas as
SPH particles. In this context, a useful optimiza-

55



tion would be to separate each particle species into
a distinct tree structure. Then, tree traversals re-
quired to obtain neighbor information would re-
quire far fewer node examinations, and load bal-
ancing between different processors would be less
sensitive to the specific distribution of particles in
the tree. We estimate that building separate trees
for particles of different types would improve the
SPH calculation rate by roughly a factor of two in
the Merger simulations. We have not implemented
such separation because benefits will only be sub-
stantial when SPH particles are a small fraction
of the total, so that the total computation time is
less significant.

Of the four major components of the code de-
scribed in this paper, the performance of the tree
build and revision scale with least efficiency to
large processor counts. They can therefore rep-
resent a significant proportion of the total time
required to complete a given simulation, especially
when the option to use individual time steps for
each particle is active. Even though the cost of a
single call to either component is small, that cost
is constant no matter how many particles are up-
dated, so that their cost relative to the average
number of particles updated per call can be high.
Further optimizations that remedy their perfor-
mance limitations will therefore be of greatest ben-
efit in speeding up entire simulations.

In the case of the tree revision, essentially all
of the cost is contained within a single traver-
sal of the data arrays holding the position, mass
and multipole moment information for each node.
Similar performance bottlenecks occur for other
simple loops like those that perform particle ex-
trapolations and updates, and are due largely to
the variable memory latencies (‘NUMA’–see sec-
tion 2.3) intrinsic to large scale shared memory
architectures. Unfortunately however, we have al-
ready mined the area of memory layout optimiza-
tions and further improvements from these tech-
niques are not likely to yield additional benefits.
Instead, a more profitable optimization will likely
be to update only parts of the tree corresponding
to active regions of the calculation, rather than its
entirety. The benefit will not come without cost
however because partial updates mean increased
levels of error in the calculations that depend on
the tree data, and some very fast technique must
be developed to define which parts of the tree are

active enough to require a full update, and which
may be left for later.

Parallel performance of the tree construction
also saturates at factors of ∼ 10 − 12, but for
other reasons than memory latency. In present
form, some portions of the build remain unpar-
allelized, of which the operations involved in as-
signing particles to specific hash grid zones com-
prise the largest fraction, at ∼ 1− 2% of the total
build time on one processor and far more in paral-
lel operation. While nominally parallelizable, at-
tempts to do so resulted in particularly poor scal-
ing and actual slow downs relative to serial perfor-
mance and have therefore been disabled. Alterna-
tive assignment strategies that improved this scal-
ing would yield immediate benefits in the overall
scaling of the build.

Secondarily, it may be beneficial to dynamically
adjust the hashing factor used to assign particles
to the temporary grid according to whether the
particle distribution is particularly smooth or par-
ticularly inhomogeneous. A low average number
per zone will benefit highly inhomogeneous distri-
butions, where a few zones may contain a very
large number of particles while many others re-
main empty. A high average number per zone
will benefit smooth distributions where the cost of
expanding the search volume to additional zones
increases relative to the cost of examining a sin-
gle zone. Finally, due to the modular structure
of the tree build and tree traversals, it is possible
to replace the binary tree currently implemented
with another structure to serve the same purpose,
so long as a similar post-processing step can be
taken to establish identical relationships between
nodes on any right branch of the tree, and their
parent node’s sibling, as described in section 3.4.
Whether any of these changes will be of net benefit
is unknown.

8.2. Availability of the code

The code is available to the public under GNU
General Public Licence version 2 from the au-
thors or via download at the UKAFF website:
http://www.ukaff.ac.uk or at the USM wibsite:
http://www.usm.lmu.de.

We wish to thank Willy Benz for his generous
gift to so many, over so many years, of his SPH

56



wisdom and the original code on which VINE is
based. Some of the computations and code devel-
opment reported here were performed using the
UK Astrophysical Fluids Facility (UKAFF), on
which this code was largely developed, and to
whom AFN owes gratitude for financial support.
AFN wishes to thank UKAFF system adminis-
trators Chris Rudge and Richard West for their
helpful and continued cooperation with changes
to system configuration that enabled various per-
formance tests to be made during the develop-
ment of this code. Portions of this work were per-
formed on the SGI-Altix 3700 Bx2 supercomputer
at the University Observatory, Munich, which was
partly funded and is supported by the DFG clus-
ter of excellence ”Origin and Structure of the Uni-
verse” (www.universe-cluster.de). Portions of this
work were carried out under the auspices of the
National Nuclear Security Administration of the
U.S. Department of Energy at Los Alamos Na-
tional Laboratory under Contract No. DE-AC52-
06NA25396, for which this is publication LA-UR
08-0430. Some of the computations presented here
used facilities at the Rechenzentrum Garching of
the Max-Planck-Gesellschaft. We wish to thank
Matthew Bate for making a set of initial conditions
for our SPH tests runs available to us. MW ac-
knowledges financial support by Volkswagen Foun-
dation under grant I/80 040.

REFERENCES

Athanassoula, E., Bosma, A., Lambert, J.-C., &
Makino, J. 1998, MNRAS, 293, 369

Barnes, J. 1990, J. Comp. Phys., 87, 161

Barnes, J. E. & Hut, P. 1986, Nature, 324, 446

Bate, M. R., Bonnell, I. A., & Bromm, V. 2003,
MNRAS, 339, 577

Bell, E. F., Naab, T., McIntosh, D. H., Somerville,
R. S., Caldwell, J. A. R., Barden, M., Wolf,
C., Rix, H.-W., Beckwith, S. V., Borch, A.,
Häussler, B., Heymans, C., Jahnke, K., Jogee,
S., Koposov, S., Meisenheimer, K., Peng, C. Y.,
Sanchez, S. F., & Wisotzki, L. 2006, ApJ, 640,
241

Benz, W., Bowers, R. L., Cameron, A. G. W., &
Press, W. H. 1990, ApJ, 348, 647

Deagum, L. & Menon, R. 1999, IEEE Computa-
tional Science and Engineering, 5(1), 46

Dubinski, J. 1996, New Astronomy, 1, 133

Dubinski, J., Kim, J., Park, C., & Humble, R.
2003, New Astronomy, 9, 111

Fukushige, T., Makino, J., & Kawai, A. 2005,
PASJ, 57, 1009

Herant, M. & Woosley, S. E. 1994, ApJ, 425, 814

Hernquist, L. 1990a, ApJ, 356, 359

—. 1990b, J. Comp. Phys., 87, 137

—. 1993, ApJS, 86, 389

Hockney, R. W. & Eastwood, J. W. 1981, Com-
puter Simulations Using Particles (McGraw-
Hill Inc.)

Ito, T., Ebisuzaki, T., Makino, J., & Sugimoto, D.
1991, PASJ, 43, 547

Jernigan, J. G. & Porter, D. H. 1989, ApJS, 71,
871

Kawai, A., Fukushige, T., Taiji, M., Makino, J.,
& Sugimoto, D. 2000, PASJ, 52, 659

Makino, J. 1990, J. Comp. Phys., 87, 148

—. 1991, PASJ, 43, 621

Makino, J., Fukushige, T., Koga, M., & Namura,
K. 2003, PASJ, 55, 1163

Makino, J., Ito, T., & Ebisuzaki, T. 1990, PASJ,
42, 717

Makino, J. & Taiji, M. 1998, Scientific Simula-
tions with Special-Purpose Computers : The
GRAPE Systems (Chichester , Toronto: John
Wiley & Sons)

Makino, J., Taiji, M., Ebisuzaki, T., & Sugimoto,
D. 1997, ApJ, 480, 432

Naab, T. & Burkert, A. 2003, ApJ, 597, 893

Naab, T., Jesseit, R., & Burkert, A. 2006a, MN-
RAS, 372, 839

Naab, T., Khochfar, S., & Burkert, A. 2006b, ApJ,
636, L81

57



Okumura, S. K., Makino, J., Ebisuzaki, T.,
Fukushige, T., Ito, T., Sugimoto, D.,
Hashimoto, E., Tomida, K., & Miyakawa, N.
1993, PASJ, 45, 329

Press, W. 1986, in Lecture Notes in Physics, Vol.
267, The Use of Supercomputers in Stellar Dy-
namics, ed. P. Hut & S. McMillan, Institute
for Advanced Study, Princeton, USA (Springer-
Verlag, Berlin Heidelberg New York), 184–192

Salmon, J. K. & Warren, M. S. 1994, J. Comp.
Phys., 111, 136

Sanders, P. & Hansch, T. 1997, in IRREGULAR
’97: Proceedings of the 4th International Sym-
posium on Solving Irregularly Structured Prob-
lems in Parallel (London, UK: Springer-Verlag),
13–24

Springel, V. 2005, MNRAS, 364, 1105

Springel, V., Yoshida, N., & White, S. D. M. 2001,
New Astronomy, 6, 79

Sugimoto, D., Chikada, Y., Makino, J., Ito, T.,
Ebisuzaki, T., & Umemura, M. 1990, Nature,
345, 33

Wadsley, J. W., Stadel, J., & Quinn, T. 2004, New
Astronomy, 9, 137

Warren, M. S. & Salmon, J. K. 1995, Computer
Physics Communications, 87, 266

Wetzstein, M., Naab, T., & Burkert, A. 2007, MN-
RAS, 375, 805

Wetzstein, M., Nelson, A. F., & Naab, T. 2006,
ApJ, 0, 0

This 2-column preprint was prepared with the AAS LATEX
macros v5.2.

58


