
VINE – A numerical code for simulating astrophysical systems

using particles I: Description of the physics and the numerical

methods

M. Wetzstein1,2, Andrew F. Nelson3,4, T. Naab2,5 and A. Burkert2

mwetz@usm.lmu.de

ABSTRACT

We present a numerical code for simulating the evolution of astrophysical systems using
particles to represent the underlying fluid flow. The code is written in Fortran 95 and is designed
to be extremely versatile, flexible and extensible, with modular options that can be selected
either at the time the code is compiled or at run time through a text input file. We include a
number of general purpose modules describing a variety of physical processes commonly required
in the astrophysical community and we expect that the effort required to integrate additional or
alternate modules into the code will small. In its simplest form the code can evolve the dynamical
trajectories of a set of particles in two or three dimensions using a module which implements
either a Leapfrog or Runge-Kutta-Fehlberg integrator, selected by the user at compile time. The
user may choose to allow the integrator to evolve the system using individual timesteps for each
particle or with a single, global time step for all. Particles may interact gravitationally as N -
body particles, and all or any subset may also interact hydrodynamically, using the Smoothed
Particle Hydrodynamic (SPH) method by selecting the SPH module. A third particle species
can be included with a module to model massive point particles which may accrete nearby SPH
or N -body particles. Such particles may be used to model, e.g., stars in a molecular cloud.
Free boundary conditions are implemented by default, and a module may be selected to include
periodic boundary conditions. Cosmological expansion may be included by selecting another
module. We use a binary ‘Press’ tree to organize particles for rapid access in gravity and SPH
calculations. Modules implementing an interface with special purpose ‘GRAPE’ hardware may
also be selected to accelerate the gravity calculations. If available, forces obtained from the
GRAPE coprocessors may be transparently substituted for those obtained from the tree, or both
tree and GRAPE may be used as a combination GRAPE/tree code. The code may be run without
modification on single processors or in parallel using OpenMP compiler directives on large scale,
shared memory parallel machines. In comparison to the Gadget-2 code of Springel (2005), the
gravitational force calculation, which is the most costly part of any simulation including self-
gravity, is ≈ 3.5 − 4.8 times faster with VINE when run on 8 Itanium 2 processors in an SGI
Altix, while producing nearly identical outcomes in our test problems. We present simulations
of several test problems, including a merger simulation of two elliptical galaxies with 800000
particles. The code is available to the public under the terms of the Gnu General Public License.

Subject headings: methods: numerical — methods: N-body simulations — galaxies: interactions

1Department of Astrophysical Sciences, Princeton Uni-

versity, Princeton, NJ 08544, USA
2Universitäts-Sternwarte, Scheinerstr. 1, 81679

München, Germany
3Los Alamos National Laboratory, HPC-5 MS B272, Los

Alamos NM, 87545, USA
4UKAFF Fellow
5Institute of Astronomy, Maddingley Road, Cambridge,

United Kingdom

1

1. Introduction

In modern astrophysics, the numerical simula-
tion of systems whose complexity is beyond the
capabilities of analytical models has become a
widely used tool. On nearly all length scales, rang-
ing from problems on cosmological distances, to
galaxy formation and evolution to star and planet
formation, numerical simulations have contributed
much to our current understanding of the physical
processes which lead to the universe we observe.

The numerical simulation of a self-gravitating
and/or gas dynamical system is a basis common
to all those problems, no matter what length scale
they belong to. The simulation techniques for
such systems can be divided into two different ap-
proaches: grid based methods divide space into
finite sized cells and compute the physical quan-
tities such as temperature, pressure, etc., inside
those cells (see e.g. Stone & Norman 1992; Ryu
et al. 1993; O’Shea et al. 2004, and references
therein). Particle based methods represent a sys-
tem by a set of particles to which physical quan-
tities such as mass, position and velocity are as-
signed or computed (see e.g. Hernquist & Katz
1989; Dave et al. 1997; Springel et al. 2001; Wad-
sley et al. 2004; Springel 2005, and references
therein). Which approach is best for modeling a
particular system depends both on the problem
to be modeled and the biases of the researcher
doing the modeling. Without going into the de-
tails of relative merits and shortcomings of either
approach, we point out that for some problems,
a grid based approach may be nearly unfeasible
because of the existence of irregular boundaries.
Large voids can also be problematic for a grid
based simulation because it requires a large num-
ber of empty or nearly empty and uninteresting
zones be included at a high computational ex-
pense. A particle based simulation naturally con-
centrates the computational work in the most in-
teresting areas of the flow, in most cases a very
valuable feature, but the absence of particles in
voids can be problematic if the simulation requires
such low density regions to be resolved at high ac-
curacy (see e.g. O’Shea et al. 2005, for a recent
comparison of grid and particle based codes for
cosmological simulations). It may also suffer from
a relatively poorer reproduction of the fluid be-
havior at shocks.

For a system evolving only under the influence
of gravity, a particle based approach leads to the
classical N -body problem. A set of Np parti-
cles evolve according to the force on each parti-
cle exerted by all the others. The efficient com-
putation of these forces is a longstanding numer-
ical problem. If gas dynamics is also required,
the Smoothed Particle Hydrodynamic (SPH, Lucy
1977; Gingold & Monaghan 1977; Benz 1990; Mon-
aghan 1992) method has achieved great success at
incorporating such processes into the framework
of a particle method. In SPH, the gas is also rep-
resented using particles (which makes the method
so useful in combination with N -body methods),
which are assumed to sample the local hydrody-
namic quantities of the underlying flow. In addi-
tion to a position and velocity, these particles also
possess an internal energy intrinsic to each and a
volume (or surface) density that is reconstructed
for each particle, based on the positions of nearby
‘neighbor’ particles. Thus, these gas particles feel
not only the gravitational forces that all particles
in the simulation do, but also pressure forces and
other gas dynamical effects.

Modeling dynamical and hydrodynamical sys-
tems using particles relies on the sufficiently accu-
rate computation of both the gravitational and hy-
drodynamical forces of the particles on each other,
then advancing them forward in time according to
those forces. Thus a time integration of the parti-
cles’ equations of motion and additional equations
for hydrodynamic quantities such as internal en-
ergy, is the problem to be solved. Constraints on
the time integration are that we would like it to
faithfully reproduce the evolution of the real sys-
tem that the simulation is supposed to model, and
that it do so efficiently, so that results may be ob-
tained quickly and insight into the physical world
gained at a minimum of cost.

In this paper and a companion (Nelson, Wet-
zstein, & Naab 2006, hereafter Vine2), we de-
scribe a numerical code for efficiently simulat-
ing the evolution of astrophysical systems using
N -body particles, with the optional additions of
including gas dynamical effects using the SPH
method, self gravity and additional massive ‘star’
particles which may accrete the other species of
particles. We call this code VINE. The present
paper describes the physics we have implemented,
the high level code design and the results of sim-

2

ulations using the code on a number of test prob-
lems as well as a comparison to the Gadget-2 code
of Springel (2005). Vine2 describes the low level
design and optimization of the most computation-
ally expensive parts of the code, the methods used
to parallelize it and the performance of each part
in serial and in parallel. VINE has been succes-
fully used for a large series of simulations on galaxy
interactions (Naab & Burkert 2003; Jesseit et al.
2005; Burkert & Naab 2005; Dasyra et al. 2006a,b;
Naab et al. 2006a,b; Naab & Trujillo 2006; Bell
et al. 2006; Thomas et al. 2007; Burkert et al.
2007; Naab et al. 2007; Jesseit et al. 2007; Wet-
zstein et al. 2007) as well as planet formation (e.g.
Nelson 2006).

In section 2 we describe the implementation
of two second order integration methods included
with the code, and a discussion of the criteria used
to determine the time steps used to evolve the par-
ticles forward in time. We describe in sections 3
and 4, respectively, the form of the equations used
to implement the SPH method and the different
options for the calculation of gravitational forces.
In section 5, we describe the implementation of
‘star’ particles which can accrete the N -body and
SPH particle species. Modifications of the equa-
tions of motion required to model cosmological ex-
pansion are given in section 6 and in section 7
we describe the boundary conditions available in
the code. In section 8 we demonstrate some of
the capabilities of the code on several test simu-
lations, including both SPH as well as a pure N -
body problems. In section 9 the performance of
VINE is compared to that of the Gadegt-2 code
of Springel (2005). Finally, in section 10, we sum-
marize the features of our code and give web sites
where the source code may be obtained electroni-
cally.

2. Time integration

In order to simulate the evolution of a physical
system using a set of Np particles, we require first
a set of equations by which the system evolves
and second a method for integrating the system
forward in time. In the case of particle systems in-
volving only gravitational interactions (‘N -body’
simulations), the equations form a set of coupled
first order differential equations governing the mo-
tion of those particles in response to each other

and (if present) to outside influences. This set
consists of the equations describing the motion of
each particle,

dxi

dt
= vi (1)

and the equations for momentum conservation

dvi

dt
= −

∇Φ

mi
. (2)

The solution of these equations is difficult because
each of the 4Np or 6Np equations (in 2 or 3 dimen-
sions) is coupled through the gravitational poten-
tial Φ. Other coupling terms must be added in
cases where other physical phenomena such as hy-
drodynamics (section 3) or cosmology (section 6)
are active, and may require additional equations
be solved. Hydrodynamic systems, for example,
must solve not only a momentum equation appro-
priately generalized from above, but also mass and
energy conservation equations, and cosmological
evolution will require other modifications to the
equations to account for cosmological expansion.

A variety of methods for integrating differen-
tial equations are available (see e.g. the textbooks
of Hockney & Eastwood 1981; Fletcher 1997),
with varying degrees of utility for any given prob-
lem. Determining which method is most efficient
is highly dependent on the characteristics of the
problem itself. Most astrophysical systems, for
example, develop highly non-linear flow patterns
with the practical consequence that high order in-
tegration methods (i.e. those with a mathematical
truncation error proportional to a high power of
the integration step size) are not generally useful.
The nonlinearities mean that time steps must be
restricted to very small sizes in order to resolve
the flow, while the high order integration requires
many derivative calculations per timestep, yield-
ing a very high computational cost to evolve a sys-
tem for a given amount of time. Even among in-
tegrators of identical ‘order’, characteristics of the
errors that develop can vary, with one being inap-
propriate for use on a problem another might be
ideally suited to solve.

In order to allow the user enough flexibility
to determine what is best for a specific problem,
we have implemented both a second order Runge-
Kutta scheme (Fehlberg 1968) and a second or-
der leapfrog scheme (see e.g. Hockney & Hohl
1969; Hernquist & Katz 1989; Rasio & Shapiro

3

1991; Springel et al. 2001) in VINE. Although very
different in structure (leapfrog requires only one
force computation per time step for example, while
the Runge-Kutta scheme requires two), users may
transparently select one or the other at the time
the code is compiled. Both integrators are very
modular in the sense that they use the same book-
keeping scheme for particles and their timesteps,
and identical calls to update routines. If a user
finds that still a different choice of integrator is
required, we expect that it would be straightfor-
ward to add it as an alternative as well.

2.1. The Runge-Kutta-Fehlberg (RKF)
Integrator

Runge-Kutta schemes of a variety of forms
have been developed since the original publica-
tion of the general method more than 100 years
ago (Kutta 1901), but until the work of Fehlberg
(1968) they included no formal description of the
size of errors that developed during an integration.
Fehlberg realized that a Runge-Kutta scheme of a
given truncation order could be embedded in a
similar scheme of one order higher, given a suit-
able choice of coefficients for both. The result-
ing pair of methods, used together, could be used
to determine a limit on the size of the next or-
der truncation error for the lower order scheme
in the pair. In VINE, we have implemented the
first order scheme with second order error control
(‘RKF1(2)’), as described by Fehlberg (1968). A
brief description of the scheme is summarized here.

For any quantity q to be integrated in time, the
quantity qn+1 at the new time tn+1 is computed
from its value qn at the previous time tn utilizing
the discretization:

qn+1 = qn + (c0k0 + c1k1)∆tn (3)

where the ci are constant parameters and the
ki are time derivatives of q evaluated at various
points during the timestep:

k0 = q̇(tn, qn), (4)

k1 = q̇(tn + α1∆tn, qn + β10k0∆tn) (5)

k2 = q̇(tn + α2∆tn, qn + β20k0∆tn + β21k1∆tn).
(6)

where q̇ is the time derivative of q and ∆tn is
the time step from tn to tn+1. The k2 term does

not appear directly in the integration equation 3
above, but does appear in the error criterion de-
fined in section 2.3.2 below. The coefficients αk

and βkl and ck defined by Fehlberg are reproduced
in table 2.1. By definition of the coefficients, the
k2 term is identical to the k0 term for the follow-
ing timestep, reducing the number of derivative
evaluations to two per timestep. The ck define
the coefficients used by the first order RK scheme,
while the ĉk terms define the coefficients used in
the second order scheme used only indirectly to
define the truncation error.

2.2. The Leapfrog Integrator

The leapfrog (LF) integration scheme is for-
mally an offset integrator: positions and velocities
are offset from each other in time by half a time
step (see e.g. Hockney & Eastwood 1981). Al-
ternate updates of position and velocity advance
from one half step behind to one half step ahead
of the other update in the sequence, effectively
‘leapfrogging’ over each other in the integration
scheme, which takes its name by analogy from the
children’s game. The leapfrog implementation in
VINE is similar to that of Springel et al. (2001), for
which a mathematically equivalent form is used, in
which the equations for the positions and veloci-
ties are written in a non-offset form as

vn+1 = vn + an+1/2∆tn (7)

xn+1 = xn +
1

2

(

vn + vn+1
)

∆tn (8)

where again indices n, n + 1/2 and n + 1 denote
quantities at time tn, tn+1/2 and tn+1, respec-
tively, and ∆tn is the step from n to n + 1. To re-
cover the offset form, notice that positions and ac-
celerations are actually defined on half timesteps,
but that the position update is effectively split into
two halves. With a fixed increment ∆t, each posi-
tion update as defined in equation 8 uses the ve-
locity corresponding to two separate velocity up-
dates, half from timestep n, vn/2, and half from

Table 1: Coefficients for the RKF1(2) Integrator
k αk βk0 βk1 ck ĉk

0 0 1/256 1/512
1 1/2 1/2 255/256 255/256
2 1 1/256 255/256 1/512

4

timestep n + 1, vn+1/2, so that, effectively, up-
dates of position are only half completed at any
‘full’ time step n.

The velocity update requires that accelerations
be calculated on half steps, n + 1/2. For simu-
lations involving self gravity and hydrodynamics,
the accelerations depend on particle positions, so
that a separate, temporary update of the position
to its correctly offset temporal location is required.
This update takes the form

xn+1/2 = xn +
1

2
vn∆tn (9)

as expected from the discussion above. Other
quantities requiring integration, such as internal
energy, smoothing lengths or viscous coefficients
needed for hydrodynamic simulations (section 3),
are defined on integer time steps. Their derivatives
must therefore be calculated on half time steps at
the same time as the accelerations themselves are
calculated. Complications arise because for most
such variables, the derivative is a function of the
variable itself or of others defined on integer time
steps. Two simple examples are of artificial viscos-
ity or of PdV work, each of which require veloc-
ity. VINE employs a linear extrapolation of each
quantity from n to n + 1/2, as shown in equation
9 for position, so that the integration scheme itself
remains formally second order. In summary, the
algorithm can be written as

1. complete position update to xn+1/2, extrap-
olate other quantities as required.

2. compute an+1/2 and other derivatives.

3. update velocities vn → vn+1, using equation
7. Update other relevant quantities using
appropriate analogous update equations.

4. update positions xn → xn+1, using equation
8.

After the fourth step the sequence starts anew.

Although slightly more cumbersome than the
offset form, the leapfrog variant above is advan-
tageous because adjustable time steps, such that
∆tn 6= ∆tn+1, are straightforward to implement
in the form above, as are individual time steps for
different particles (see section 2.4). Both features
will be desirable in simulations of systems where
time scales vary widely as conditions change over

time. The consequences for such adaptability is
that the exact leapfrog symmetry between posi-
tion and velocity updates is lost, but changes be-
tween one time step value and another should be
infrequent enough in practice to make overall er-
rors resulting from them small.

2.3. Timestep Criteria

In order to produce an accurate integration,
time steps must be chosen that are small enough
to maintain the stability of the system against the
growth of errors. At the same time, time steps
should not be much smaller than required to main-
tain stability and accuracy, because it wastes com-
putational resources that could be more efficiently
employed in performing larger simulations. Here
we describe the criteria used in VINE to determine
timesteps for the particles.

2.3.1. Time Step Criteria common to both the

Leapfrog and RKF Integrators

The timestep criteria described in this section
apply to both the leapfrog and the RKF integra-
tors. The next time step ∆tn+1 of a particle i is
determined by the minimum of value derived from
a set of N criteria:

∆tn+1 = min
N

(∆tn+1
N), (10)

where we have suppressed the subscript, i, desig-
nating each particle. Whether or not to include
a particular criterion may be selected by the user
at compile time by commenting out (or not) calls
to subroutines that calculate one or another of the
∆tn+1

N , and by routines active only when certain
options are selected, such as the Runge-Kutta in-
tegrator or SPH (sections 2.3.2 and 3.4).

Three simple criteria are based on changes in
the acceleration of a particle:

∆tn+1
a = τacc

√

h

|a|
, (11)

its velocity:

∆tn+1
v = τvel

h

|v|
, (12)

or both in combination:

∆tn+1
va = τva

|v|

|a|
, (13)

5

where h, a and v are the gravitational softening
length, the acceleration and velocity of the parti-
cle i at the previous time step, respectively, and
the three values of τ are tuning parameters for
each criterion. Numerical experiments show that
τacc ≈ 0.5 gives good results. When included, we
use similar values for the other two tolerance pa-
rameters as well.

Although the combination of all three criteria is
sometimes useful, and indeed is used in e.g. Nel-
son (2006) with VINE, in many cases it is suffi-
cient to include only the acceleration based cri-
terion of equation 11, allowing the others to be
neglected. For example, when the velocity criteria
are included they can impose very restrictive con-
straints on the calculated time step. If a particle
moves at very high velocities, equation 12 can re-
quire small time steps even when the particle does
not change its trajectory and could otherwise be
integrated with large time steps. Similarly, equa-
tion 13 can limit the time step of a particle when
it moves very slowly but feels only small forces.

2.3.2. Time Step Criteria for the RKF Integrator

In addition to the conditions above, the RKF
integrator requires an additional criterion, which
limits the second order truncation error in the
discretization (see section 2.1). As defined by
Fehlberg, the second order truncation error for in-
tegrating variable q through a time ∆t(i) will be:

TE = ĉ2(k0 − k2)∆tn, (14)

where k0 and k2 are defined in equations 4 and 6
and ĉ2 is defined in table 2.1. Unfortunately, the
truncation error as defined is an absolute error. It
depends on the units for a given variable as well
as the size of the system and is therefore not par-
ticularly useful without explicit tuning for every
variable, physical system and simulation. Various
relative error metrics are straightforward to de-
velop from equation 14 however. For example, we
may define a relative error metric such that the
truncation error is no larger than a small fraction
of the magnitude of the variable itself:

RE =
|TE|

τRKF|q|
, (15)

where we define τRKF as a tunable parameter re-
stricting the error, and we require RE to be . 1
for an acceptable error.

We may expect the optimal timestep to be pro-
portional to the square root of the truncation er-
ror, since the error itself is second order in time.
Then we may determine a new time step from the
old by comparing the ratio of the new and old val-
ues to the error metric:

∆tn+1
RKF = ∆tnRKF

√

1/RE. (16)

With this definition, the n + 1 time step will be
decreased when the error for a given time step is
large. If small, it will be increased. We define the
final value of ∆tn+1

RKF to be the minimum over all
integration variables defined in the simulation.

Although often an improvement over the direct
measure of error and time step definition, equa-
tion 16 may still suffer from several deficiencies
in practice, depending on the specific integration
variable. For example, the size of the timestep
calculated for positions depends on the position
itself, and particles near the origin will necessar-
ily receive more restrictive time steps than those
further away. An arbitrary change of coordinate
system, shifting the entire system some distance in
any direction, will also change the error metric and
time step calculation. For the same reasons, ve-
locity errors and timesteps will suffer similar prob-
lems.

A variety of strategies to sidestep undesirable
properties for one variable or another are available,
including replacing q in equation 15 with its value
subtracted from the system’s average velocity or
center of mass for velocity or position coordinates
respectively, or adding a constant error softening
value to eliminate singularities in the error near
zeros of the variable. Following discussion in Press
et al. (1992), one may also replace |q| for some
variables with its value added to its change at the
last timestep:

q′ = |q| + |∆tnq̇|. (17)

Alternate error metrics such as these have been
implemented in VINE with some success on sev-
eral systems we have studied, however in general,
we expect that suitable error metrics will need to
be worked out on a case by case basis by the user.
Some small comfort may be had in the fact that,
under most conditions, other error conditions are
more restrictive than the RKF error, making ques-
tions of the suitability of the form of the RKF cri-
terion moot.

6

2.3.3. Differences in settings for time step cri-

teria when global or individual time steps

are used, or for different problems

For both of VINE’s integrators, it is possible
to check after each time step whether the integra-
tion over that time step met or failed the set of
error criteria described above. If so, in principle
one can revert the time step and repeat it with
a smaller step size. In practice, reversion is only
possible if the entire system is advanced using a
single, global time step for all particles, and is in
fact done in VINE when the global time step op-
tion is selected. When individual time steps are
used (discussed in section 2.4 below), reverting the
time step is usually not possible because it requires
keeping track of a large set of previous time steps
for every particle in the system, and is therefore
usually prohibitive in terms of memory as well as
computational effort. Thus for an individual time
step scheme, the criteria for choosing the next time
step and their settings must be chosen more con-
servatively than with the global time step option,
in order to ensure in advance that the time step is
small enough to integrate that particle’s properties
correctly. For example, Bate et al. (1995) demon-
strated that criteria similar to those in equation 16
give good results with the RKF integrator when
used alone with global timesteps, but that errors
become unacceptable when used alone with indi-
vidual particle time steps. Adding another crite-
rion of the form of equation 11 alleviated the prob-
lem. Similar situations may arise with the criteria
currently implemented in VINE when used on dif-
ferent problems. We have therefore designed the
error criteria code as a set of independent routines
for calculating specific error criteria, each with the
same interface and each called from a master rou-
tine, whose sole purpose is to serve as a location at
which criteria may be included or excluded. The
selection of which criteria to use and the addition
of other criteria can be done by the user with min-
imal difficulty, and the timestep itself is computed
from the minimum of all active criteria.

2.4. The Individual Timestep Scheme

In many astrophysical contexts, it is necessary
to model the evolution of regions with densities
(or other quantities) that are orders of magnitude
larger than those of other regions in the same sim-

0

1

2

3

4

Fig. 1.— The individual time step scheme used
in VINE. Only the five highest levels of the time
step hierarchy are shown here. Level 0 represents
the maximum time step, level 4 is a factor of 24

smaller.

ulation, or that change orders of magnitude more
quickly. Such large variations naturally introduce
a wide range of physical timescales.

Although it might be desirable in some cases to
evolve all particles with a single time step in order
to maintain a highly stable integration, the com-
putational expense of doing so in all cases can be
prohibitive. Instead, it is possible to assign time
steps for each particle on an individual basis as
required by a given particle and thereby to evolve
the particles independently. Assigning individual
time steps to the particles can speed up a simu-
lation considerably, since little processor time is
wasted on evolving less dynamic regions with the
same small time steps as the most dynamic regions
present in the system.

Users of VINE can select whether to run simu-
lations with either a single global timestep or an
individual time step for each particle. Global time
steps can be set either to the minimum absolute
time step (‘global continuous’ mode) or to the min-
imum binned time step (’global binned’ mode) cor-
responding to the time bins that would be used if
the individual time step option were active, as de-
scribed below. The latter option restricts the time
steps to a discrete set of sizes and therefore may
enhance integrator stability, particularly for the
leapfrog integrator, in which fixed time steps are
formally required to retain the symplectic charac-
ter of the integration.

When the user selects individual time steps,
VINE uses a variant of the scheme proposed by
Hernquist & Katz (1989) for their TreeSPH code,
based on previous work of Porter (1985) and Ewell
(1988). The user first chooses a maximum time

7

step allowed for the system, which forms the top
of the hierarchy of smaller time step levels con-
structed by dividing the time step on the next
higher level by 2 (see figure 1). For time in-
crements smaller than the maximum, time is re-
garded as an integer quantity, whose maximum
value is represented by a large power of 2, in VINE
set to 228. Each shorter time step can then be rep-
resented by a value 228−n where n is the time step
level counted from the top (see figure 1). Mul-
tiplying each integer by the smallest real valued
time step increment recovers the true, real valued
time or time increment, ∆t, as needed. Time up-
dates smaller than the maximum are updated in
integer increments, thereby avoiding errors associ-
ated with time drift or finite precision truncation
errors, as may occur when many small, real valued
quantities are added together. After the integra-
tion has proceeded through a full step, so that par-
ticles on all levels have been updated to the end
of the largest step, the real valued absolute time
is incremented by the value of the largest step.

VINE assigns each particle its own provisional
time step as described in 2.3, then truncates it
to the next smaller time step level defined in the
scheme. Time step assignment is done transpar-
ently for both the leapfrog and RKF integrators
using the same binning scheme. Because the num-
ber of levels is finite, particles evolve forward in
groups corresponding to one or more levels of the
scheme that are currently active, rather than one
by one according to a continuous spectrum of time
steps. This is important for achieving computa-
tional efficiency, both in serial and parallel oper-
ation, because force computations for only one or
a few particles at a time are comparatively ineffi-
cient and difficult to balance among a large array
of processors running in parallel. Overheads asso-
ciated with repeatedly extrapolating all inactive
particles are also minimized by the grouping.

Three integer time variables are assigned to
each particle, defining the beginning of its cur-
rent time step, I0, its half time step, I1, and its
time increment, Idt. At the beginning of every up-
date, VINE performs a search through the list of
all particles to determine the closest future time
for which any particle requires a derivative calcu-
lation, defined by the condition that

Inext = min
i

(I0 + Idt, I1) (18)

where the minimum is taken over all particles, i,
and the resulting value Inext defines the time at
which the next derivative calculation will occur.
Using the value of Inext, VINE sorts particles onto
three lists: particles for which Inext matches their
end time step time, I0 + Idt, those for which Inext

matches their half time step time I1, and those
for which neither criterion applies. The three lists
correspond to particles requiring ‘full’ updates to
the end of their time step, those requiring ‘half’
updates at its midpoint, and those which do not
require any update at all. Simultaneously, VINE
calculates a real valued time step increment, ∆τ ,
for use during the integration for each particle. For
particles at either their half or full update step,
∆τ is identical to the particle’s integration step,
∆t, otherwise, it defines the difference between the
current time and the time of its last update. The
values of ∆τ are then given to the integrator, all
particles are extrapolated to the current time and
a derivative calculation is performed.

Two other features of the time step scheme re-
quire notice. First, by definition, I0 +Idt is always
greater than I1 within a single time step. If the
value of I1 is not reset following its half update
step, no particle would ever be sorted onto the full
update list at all. The problem is compounded by
the fact that I1 cannot be updated until after a full
update because of the possibility that the particle
move from one time step bin to another. The con-
flict poses no problem for the leapfrog integrator
in practice because no distinction between full and
half updates is ever made: the half step update is
simply the time at which a new derivative calcu-
lation is required. During the extrapolation step,
all particles use their value of ∆τ directly, while
during the update step, active particles simply re-
define their step size to twice ∆t. On the other
hand, the RKF integrator does need to distinguish
between particles requiring derivative calculations
at their half and full update steps. In order to al-
low successful searches for particles requiring full
updates, VINE replaces the value of I1 for parti-
cles completing their half update steps with the
largest allowed integer time, effectively moving it
out of the way, so that it can never set the value of
Inext above. Later, after it completes its full time
step, both I0 and I1 are updated to appropriate
values.

Second, the sequence of updates for different

8

time step levels proceeds in different order for the
leapfrog and RKF integrators. When the RKF in-
tegrator is used, particles on the finest time step
level become active first at the time of their own
half update, then at their full update time. Their
full update time corresponds also to the half time
step of the next coarser level, so that at that time
particles from both levels are active and require
derivative calculations. Inactive particles on still
higher levels are extrapolated from an earlier time,
corresponding to the beginning of their time step,
to the current time. As the sequence repeats, par-
ticles from as few as one level and as many as all
levels may require updates and all fully active par-
ticles are updated to the same end time.

Particle updates with the leapfrog integrator
occur for only a single time step level at a time,
because the time of half time steps on one level
do not correspond to the times of half steps on
any other level. Both serial and parallel efficiency
will be reduced somewhat relative to the RKF be-
cause total number of particles updated per cycle
is smaller. Also, when particles on coarser lev-
els become active, they advance forward by an in-
crement corresponding to two or more steps on
finer levels. This is important because it means
that inactive particles on coarse levels must be ex-
trapolated both forward and backwards in time
at different points in the sequence as the sys-
tem is synchronized in preparation for the next
derivative calculation. No particle is ever extrap-
olated more than one half step in either direction
however, so the extrapolation remains within the
range spanned by the original update.

3. Smoothed Particle Hydrodynamics

The Smoothed Particle Hydrodynamics (SPH)
technique for simulating hydrodynamic phenom-
ena was first described by Lucy (1977) and Gin-
gold & Monaghan (1977). Since then, much effort
has gone into developing the method (Gingold &
Monaghan 1982; Monaghan & Gingold 1983; Mon-
aghan 1985, 1988) and it has become widely used
in the study of many astrophysical problems (see
Benz 1988, 1990; Monaghan 1992, for reviews).

There are a variety of formulations of the SPH
equations, different in various details. In the fol-
lowing, we present the formulation implemented
in VINE, and will discuss differences from other

formulations and some of the corresponding ad-
vantages and disadvantages separately in section
3.3.

SPH solves the hydrodynamical equations in
Lagrangian form and can be regarded as an inter-
polation technique: the positions of the SPH par-
ticles combined with an interpolation kernel de-
fine the fluid quantities throughout the flow. By
default, VINE implements the widely used W4
smoothing kernel defined by Monaghan & Lat-
tanzio (1985) as:

W (rij , hij) =
σ

hν
ij

1 − 3
2v2 + 3

4v3 if 0 ≤ v < 1,
1
4 (2 − v)3 if 1 ≤ v < 2,
0 otherwise,

(19)
where ν is the number of dimensions and σ is
the normalization with values of 2/3, 10/(7π) and
1/π in one, two and three dimensions respectively.
Fluid quantities at the position of particle i are
then obtained as weighted sums over the proper-
ties of all its neighboring particles. For the density,
this reads

ρi ≡ ρ(ri) =
N
∑

j=1

mj W (rij , hij) (20)

where W is the kernel function defined by equation
19 and mj are the masses of the, say N , neighbor-
ing particles.

The dimensionless separation, v = rij/hij , be-
tween particles i and j, requires the actual mag-
nitude of the separation, rij = |ri − rj |, and their
characteristic ‘smoothing’ length scale, hij , de-
fined as the mean of the smoothing lengths of the
two particles:

hij = (hi + hj)/2. (21)

Thus, with these definitions and the W4 kernel,
particles whose separations are v < 2 contribute
to the summations as ‘neighbors’ and the influence
of particles on each other are symmetric under
interchange of indices, an important characteris-
tic required to ensure conservation of momentum
and other quantities. All other quantities requir-
ing symmetrization are defined similarly in VINE
(see also section 3.3, below).

The choice of kernel used in VINE is made via
an external module, so users may substitute an al-
ternate if desired with little or no change to the

9

rest of the code. The W4 kernel above is second
order in the interpolant and has the advantage of
being defined on compact support: particles more
distant than v = 2 do not contribute to the sum.
As written (see Vine2, section 3.5), VINE cur-
rently defines neighbors as particles with v < 2,
consistent with the definition appropriate for the
W4 kernel. Other choices of kernel might include
Gaussian kernels used more commonly earlier in
the history of SPH, which are not defined on com-
pact support at all, or other spline kernels, per-
haps compactly defined over a different range of
separations, v. For these kernels, a new neigh-
bor definition must be made in the code, to de-
fine an artificial cutoff or new separation range for
the neighbor search. This modification requires a
change of only a single line of code, and will there-
fore be trivial to implement.

3.1. The SPH formulation of the equa-
tions of hydrodynamics implemented
in VINE

3.1.1. Additions to the Momentum Equation

When gas dynamics are included in a simula-
tion, an additional term must be included to equa-
tion 2, which models forces due to pressure gradi-
ents and in its ideal form is:

dvi

dt
= −

∇p

ρ
(22)

where p and ρ are the pressure and mass density of
the fluid, respectively. The SPH formulation used
in VINE casts this equation in the form:

dvi

dt
= −

∑

j

mj

(

pi

ρ2
i

+
pj

ρ2
j

+ Πij

)

∇iW (rij , hij) .

(23)
where ∇i means take the gradient with respect to
the coordinates of particle i (see e.g. Benz 1990),
p is the gas pressure and ρ, the density, is given
by equation 20. An additional term, Πij , appears
in equation 23 but has no counterpart in equation
22. Its purpose is described in section 3.1.3 and
takes the form of an artificial viscous pressure in-
cluded to model dissipative effects, without which
there is no mechanism to convert kinetic energy
into heat due to non-reversible processes such as
shocks or viscosity. Alternatively (or in addition),
one might include a dissipative term modeled on

the viscous terms found in the Navier-Stokes equa-
tions directly, however, in its present form VINE
does not include such a term.

3.1.2. The energy equation and equation of state

The change in the thermodynamic state of the
fluid requires an evolution equation for a state
variable corresponding to its internal energy or en-
tropy and Springel & Hernquist (2002) compares
the benefits of using one or the other formulation.
VINE employs an equation for the specific internal
energy of the gas, defined for each particle. In the
simplest case of an ideal gas with no external heat-
ing or cooling terms, only compressional heating
and cooling are important and the equation takes
the form:

dui

dt
= −

p

ρ
∇ · v, (24)

where v is the local fluid velocity. Analogously to
the momentum equation above, the SPH formu-
lation used in VINE casts this equation with two
terms as (Benz 1990):

dui

dt
=

pi

ρ2
i

Nn
∑

j=1

mj vij · ∇iW (rij , hij)

+
1

2

Nn
∑

j=1

mj Πij vij · ∇iW (rij , hij). (25)

where the first term corresponds to reversible
(‘PdV ’) work. As for the momentum equation,
the second term including the viscous pressure Πij

has no counterpart in equation 24. It models the
irreversible thermal energy generation produced
by the artificial viscosity as it attempts to model
shocks or turbulent energy dissipation. A master
routine is available for users of VINE to incorpo-
rate additional sources or sinks of internal energy
via calls to external routines, written to model a
specific system. Switches to activate calls to these
routines are available to users in a text input file,
or can be trivially added to it, which is read in by
VINE at run time.

To close the set of equations, an equation of
state must also be defined to relate the internal
energy, density and pressure to each other. VINE
includes options to call several simple equations
of state, such as isothermal, isentropic and ideal
gases. While the simple choices included will suf-
fice for many problems, we recognize that any set

10

of equations of state will not be sufficient in gen-
eral. Therefore, as for energy sources and sinks, a
master routine is available for users to incorporate
additional equations of state into VINE with min-
imal difficulty through calls to external routines,
activated by switches set in a text input file.

3.1.3. Artificial Viscosity

VINE incorporates an artificial viscous pres-
sure in its momentum and energy equations
to model irreversible thermodynamic dissipation
from shocks and viscosity. Following standard
practice, the viscous pressure includes both a bulk
viscosity (the ‘α’ term) to eliminate subsonic ve-
locity oscillations and a von Neumann-Richtmyer
viscosity (the ‘β’ term) to convert kinetic energy
to thermal energy and prevent particle interpen-
etration in shocks (Monaghan & Gingold 1983).
Formally, the expression for Πij is

Πij =

{

(−αij cij µij + βij µ2
ij)/ρij vij ·rij ≤ 0,

0 vij ·rij > 0,
(26)

where scalar quantities with both indices i and j
are symmetrized values using equation 34 in sec-
tion 3.3 below. Vector quantities with two indices
represent differences, e.g. vij = vi − vj , and µij

plays the role of the velocity divergence:

µij =
hij vij · rij

r2
ij + η2h2

ij

fij , (27)

with η ≈ 10−1 − 10−2 to prevent singularities.

In its original form (Lattanzio et al. 1986), fij

is set to unity in equation 27. Balsara (1990,
1995) found that this form gives rise to large en-
tropy generation in pure shear flows, which he sup-
pressed by defining an additional factor f to re-
duce the contribution selectively in such flow con-
figurations. He defines fi as

fi =

∣

∣

〈

∇ · vi

〉∣

∣

∣

∣

〈

∇ · vi

〉∣

∣+
∣

∣

〈

∇×vi

〉∣

∣+ η′
(28)

with η′ preventing divergence once more. VINE
allows the user to choose whether or not to allow
the factor f to vary or to set it permanently to
unity for all particles via a run time option.

The factors α and β in equation 26 are parame-
ters controlling the strength of the artificial viscos-
ity. The best choice for their values depend some-

what on the problem being addressed in a partic-
ular simulation (see e.g. Steinmetz & Müller 1993;
Lombardi et al. 1999, for some common choices),
but values near α = 1 and β = 2 are most com-
monly used in the literature. VINE allows users to
set both values in an input file or, at the user’s op-
tion, to be set dynamically as conditions warrant
at different times or locations in a simulation. The
latter setting utilizes a variant of the formulation
designed by Morris & Monaghan (1997), where
each particle is assigned time dependent viscous
parameters, to minimize unwanted viscous dissi-
pation in quiescent flows while retaining good re-
production of the flow properties in shocked re-
gions where it is required. In both standard test
problems and in realistic cosmological models of of
galaxy clusters, Dolag et al. (2005) found such a
time dependent AV formulation to be very useful,
yielding much more accurate results compared to
the standard formulation with fixed parameters.

Following Morris & Monaghan 1997, each par-
ticle is assigned its own value of the viscous coef-
ficient, αi, which changes in time according to a
source and decay equation taking the form:

dαi

dt
= −

αi − α∗

τi
+ Si. (29)

The first term forces the value of αi to decay
asymptotically to a value of α∗ on a time scale
τi, given by

τi =
δαhi

cs

√

(γ − 1)/2γ
, (30)

where δα is a factor to relate the decay time scale
to a more convenient decay length scale describ-
ing the distance over which the coefficient decays
behind the shock. The form of the decay time is
derived by Morris & Monaghan 1997 from the post
shock Mach number for strong shocks, combined
with the sound speed and smoothing length.

The second term in equation 29 is a source term
of the form discussed by Rosswog et al. (2000):

Si = S0 max(−fi(αmax − αi)∇ · vi, 0) (31)

where αmax is a maximum value of the viscous
coefficient chosen to ensure that repeated strong
compressions or shocks do not increase the vis-
cous parameter to values much larger than those
known to yield good results in test problems. The

11

source function depends on the velocity diver-
gence, so that αi grows in strong compressions
as required, and also includes the Balsara coef-
ficient from equation 28 as suggested by Morris &
Monaghan 1997 in order to suppress growth of the
source function in shear flows. The scale factor S0

accounts for equations of state with γ 6= 5/3:

S0 = [ln(
5/3 + 1

5/3 − 1
)]/[ln(

γ + 1

γ − 1
)], (32)

and is employed to ensure that the peak value of α
remains more nearly independent of the equation
of state.

As implemented in VINE, each of the parame-
ters α, β, αmax, α∗ and δα may be set at run time
by the user with appropriate choice made in a text
input file. Both the fixed and time dependent vis-
cosity implementations retain the von-Neumann
Richtmyer term for each particle, with the ratio of
the two terms β/α also set by the user and fixed
to the same value for all particles.

3.2. Variable smoothing lengths

With few exceptions, astrophysical systems ex-
hibit moderate or large density contrasts and ide-
ally one would like to resolve these contrasts as
well as possible in simulations. The accuracy of
the interpolation of the SPH scheme depends on
the number of neighboring particles taken into
account in sums like equation 20, which makes
high numbers of neighbors (large h values) desir-
able. On the other hand, large neighbor counts
increase the computational effort and decrease the
spatial resolution, since only scales larger than h
are resolved. These two competing effects lead
to a requirement that the number of neighbors
should stay roughly constant at a level where cor-
rect interpolation is assured without wasting com-
putational resources. Thus the particle smooth-
ing lengths, h, need to vary in space and time,
i.e. each particle i gets its own time-dependent
smoothing length, hi(t), which is then integrated
according to:

dhi

dt
= −

1

nd

hi

ρi

dρi

dt
=

1

nd
hi ∇ · vi , (33)

where nd is the number of dimensions and the
continuity equation has been used to replace the
time derivative of the density (Benz 1990). If

the integration of equation 33 leads to a neighbor
count outside a given range, an exponential correc-
tion term pushes |ḣi| to greater values, such that
more/less neighbors are found on the next step
if too few/many were found on the current step.
VINE attempts to keep the neighbor count within
the range [30, 70] in 3D and [10, 30] in 2D. These
ranges depend somewhat on the total number of
particles (see Lombardi et al. 1999, and references
therein) and on the physics itself (Attwood et al.
2007), and so are defined as parameters that can
be changed when the code is compiled.

The error introduced into the interpolation
scheme by allowing for varying smoothing lengths
is second order in h (Monaghan 1985; Hernquist
& Katz 1989). Since SPH with constant smooth-
ing lengths is also only accurate to second or-
der in h with the kernel in equation 19 (see e.g.
Benz 1990), the addition of variable smoothing
lengths imposes no additional restriction. How-
ever, variable smoothing lengths formally intro-
duce an additional term in the interpolated forms
of the gradients of functions, as these forms in-
volve gradients of the kernel. These additional
terms can be neglected in many simulations (see
Evrard 1988), but doing so may cause spurious
entropy generation in some cases Nelson & Pa-
paloizou 1994; Springel & Hernquist 2002; Price
& Monaghan 2004. In its present form, VINE ne-
glects the additional terms, but modifications to
the code to implement them are planned for the
future.

3.3. Symmetrization of quantities in SPH

The description of the SPH equations so far has
only dealt with the specific form implemented in
VINE. Other formulations exist (e.g. Gingold &
Monaghan 1982; Evrard 1988; Hernquist & Katz
1989), but a thorough review of even the most
common is beyond the scope of this paper. We
suggest Thacker et al. (2000) for a more detailed
discussion of the alternatives, and limit ourselves
here to an outline of a few of the major points re-
garding the differences and why we use the scheme
implemented in VINE.

Most differences between the SPH implemen-
tations come from the way force symmetry be-
tween pairs of particles is handled. For momen-
tum conservation, symmetry between interchange
of indices in the pairwise force calculation between

12

two particles is required. As noted above, VINE
uses the arithmetic mean of quantities defined for
each particle to produce the symmetry:

qij =
qi + qj

2
, (34)

where q is some quantity intrinsic to a particle such
as smoothing length or sound speed. Specifically
for the calculation of the kernel and its gradient,
VINE uses a symmetrized smoothing length, hij .
Alternatively, some implementations derive force
symmetry from a symmetrized kernel. Rather
than defining W (rij , hij), these implementations

define W̃ij as

W̃ij =
1

2
W (rij , hi) +

1

2
W (rij , hj), (35)

as originally suggested by Hernquist & Katz
(1989) and used e.g. by Dave et al. (1997); Car-
raro et al. (1998); Lia & Carraro (2000); Springel
et al. (2001) and Wadsley et al. (2004). Other
symmetry differences originate in the form of the
momentum equation and energy equations where,
rather than calculate a sum of pressure forces from
each particle in a pair, a geometric mean is taken.

The choice of symmetrization has direct impli-
cations for the neighbor search as well. To as-
sure force symmetry, neighboring particles i and j
must be determined to be mutual neighbors. Some
codes use range search techniques (see e.g. Stein-
metz 1996; Springel et al. 2001, note that only
the serial version of Gadget-1 uses this technique).
In this case, all particles j with |ri − rj | ≤ η hi

are used as neighbors of i, with η > 1 and typ-
ically η ≈ 1.3. This method does not guarantee
that both particles i and j will find each other
as neighbors. Using hij = (hi + hj)/2 for the
neighbor search in each individual comparison of
two particles assures by construction that the mu-
tual neighbor property is satisfied for all pairs i, j.
The higher computational cost (if any) required to
complete searches is more than offset by the fact
that symmetrizing the kernels through equation 35
leads to evaluating the kernel function (or its gra-
dient) twice, while VINE only needs to evaluate
them once.

3.4. Additional time step criteria for SPH
simulations

Two additional time step criteria are required
in SPH simulations. First the Courant-Friedrichs-

Lewy condition must be satisfied:

∆tn+1
CFL = τCFL

hi

ci + 1.2 (αi ci + βi hi maxj µij)
(36)

where αi and βi are the artificial viscosity pa-
rameters and ci is the sound speed for particle i,
and µij is defined by equation 27 with the maxi-
mum taken over all neighboring particles j of par-
ticle i. The form of equation 36 is that suggested
by Monaghan (1989), who recommend values of
τCFL ≈ 0.3 for good results.

Secondly, VINE requires that the smoothing
length of each particle must not change too much
in one timestep:

∆tn+1
h = τh

hi

ḣi

, (37)

where τh is a tuning parameter. We set τh ≈
0.1 − 0.15 in order to ensure that particles en-
countering strong shocks require several timesteps
to pass entirely through the interface. For a gas
with a ratio of specific heats, γ = 5/3 for example,
the density enhancement across a strong shock will
be a factor of four, corresponding to a smoothing
length change of 41/3 ≈ 1.6 in 3D. With a den-
sity jump of the severity and suddenness experi-
enced in a shock, the timestep restriction of equa-
tion 37 will become important and the particle’s
timestep will decrease, allowing better resolution
of the physical conditions of the shock interface.
With τh = 0.15 for example, a particle will require
at least ∼ 4 − 5 timesteps to contract fully to the
post-shock condition.

The criterion in equation 37 is also beneficial in
situations where the spatial gradient of neighbors
is large, as it may be for particles on the surface of
an object. Small changes in the particle’s smooth-
ing length can then lead to very large changes in its
neighbor count and ultimately to large oscillations
between far too many and far too few neighbors,
from one timestep to the next. A timestep restric-
tion dependent on the smoothing length variation
restricts such particles to correspondingly smaller
timesteps, so that such oscillations do not develop.

Preventing or damping such oscillations is im-
portant both because of the comparatively high
cost of computing the evolution of such boundary
particles, but also because they can lead to oscil-
lations in the physical quantities such as pressure

13

forces, enhancing oscillations further as particles
experience large intermittent kicks. Although cer-
tainly more fundamental in a physical sense, in a
numerical sense quantities such as density are ac-
tually derived from numerically relevant smooth-
ing length of a particle. Therefore, rather than
limiting the change in derived quantities such as
density, VINE limits the change to the particle’s
smoothing length, as a more direct throttle on un-
physical behavior.

4. Gravity

The most costly calculation in nearly any par-
ticle simulation including gravity is the computa-
tion of the gravitational forces of the particles on
each other. This is due to its long range nature,
which couples all particles in the system to each
other. Modeling many astrophysical systems re-
quires forces accurate only to ∼ 0.1 − 1%, due to
the fact that other errors already present in the
various approximations made in the model are of
similar or greater magnitude. For such systems,
an approximate solution will be not only accept-
able, but much to be desired if it can be obtained
much more quickly than an exact solution. For
other models, e.g. star clusters, highly accurate
forces must be determined for accurate evolution
in spite of their cost; an approximate solution will
be useless. VINE implements both approximate
and exact methods for calculating mutual gravi-
tational forces of particles on each other. In this
section, we provide an overview of our implemen-
tation of these alternatives. We refer the reader to
Vine2 for a lower level description of the detailed
methods. Users can choose from among the avail-
able options at run time an appropriate choice in
a text input file.

4.1. Exact gravitational forces obtained
from direct summation

The most naive approach to calculating the
magnitudes of interactions of particles on each
other is simply to calculate directly a sum of the
terms due to every particle on every other particle:

ai = −

Np
∑

j

Gmj

|ri − rj |2
r̂ij (38)

where ri and rj are the positions of particles i
and j, r̂ij is the unit vector connecting them and

mj is the mass of the j’th particle. This cal-
culation is extremely expensive, requiring O(N2

p)
operations for every time step. VINE includes
two alternatives for computing the sum in equa-
tion 38 for every particle. The sum can either be
computed directly by the processor, or it can be
computed instead by special purpose hardware, so
called ‘GRAPE’ coprocessors, described in section
4.3 below.

4.2. Approximate gravitational forces ob-
tained from tree based sorting

When physical models do not require or do not
allow for exact inter-particle gravitational force
calculations, as will be the case for so called ‘colli-
sionless’ systems, approximate forces may become
a desirable alternative if they speed up the re-
quired computations while still retaining sufficient
accuracy. For gravitational force calculations, ap-
proximate forces can be obtained by aggregating
the contributions of distant particles into a single
interaction, for which all of their individual con-
tributions together can be approximated as being
due to a sum of multipole moments, perhaps trun-
cated to some low order.

The difficulties in this approach lie in establish-
ing how big each aggregate can be before errors
in the force become overwhelming, and in sorting
through all of the possible nodes, making certain
that every particle is included in the force calcu-
lation for every other particle exactly once, either
as an individual or as part of an aggregate. The
most common and most general purpose method
for obtaining such approximate forces is to orga-
nize the particles into a tree data structure, and
then use tree nodes as proxies for groups of par-
ticles. By examining successive nodes in the tree,
all of the particles contained in that node can be
either qualified as interactors, or the node can be
opened and its children examined for acceptabil-
ity instead. Fully traversing the tree produces a
list of nodes determined to be acceptable for in-
teraction with a given particle, and a list of atoms
(single particles), for which an exact computation
is required. Using a tree to determine a list of
neighbors or acceptable nodes reduces the overall
computational effort to O(Np log Np).

The challenge in making the use of a tree effi-
cient are first to choose an efficient method to tra-
verse the tree, and second, to choose an efficient

14

method to decide which tree nodes are acceptable
as is, and which must be separated into their con-
stituent parts to be examined in more detail. We
will describe both the traversal strategy and the
node acceptability criteria used in VINE in detail
in Vine2. For purposes here, it will be sufficient
to describe qualitatively the criteria used to deter-
mine node acceptability.

In order to calculate an accurate gravitational
force due to some node which defines a particle dis-
tribution, the error it contributes to the total force
on a particle must be small. Mathematically, for a
multipole expansion to converge at all, this condi-
tion translates to the physical statement that the
particle on which the force acts must be remote
from the mass distribution defining the node (see
e.g. Jackson 1975, ch. 4). In addition, if the
multipole expansion is truncated rather than con-
tinuing to infinite order, as will be desirable in an
approximate calculation in order to save time, er-
rors corresponding to the neglected contributions
from the higher order terms must also be small.

VINE implements three runtime selectable op-
tions for determining the acceptability of a node
to be used in the gravitational force calculation,
each based on a different implementation of the
convergence radius of a multipole expansion and
of limits on the errors due to series truncation.
Following common practice, we call each of these
options ‘Multipole Acceptance Criteria’, or MACs.
Each MAC includes a user settable parameter ‘θ’
by which the accuracy in different problems may
be tuned to the most suitable value for that prob-
lem, but the interpretation given to θ is specific to
each MAC.

The first and simplest is the ‘geometric’ MAC:

r2
ij >

(

hj

θ
+ hi

)2

= R2
crit, (39)

where hi and hj are the physical sizes of the parti-
cle and node, respectively and r2

ij is the square of
their separation. The accuracy parameter θ takes
a value between zero and one, and parameterizes
the minimum acceptable distance at which a node
may be used in the gravity calculation. Alterna-
tively, by switching the positions of θ and Rcrit

and setting hi = 0 it may be interpreted instead
as the tangent of the angle subtended by the node
on the ‘sky’ as seen by the particle. We incorpo-
rate the size of the particle, hi, into the MAC in

order to ensure that the condition is satisfied for
all locations inside it, and to allow a generaliza-
tion of the MAC to be used for groups of particles
taken together (see Vine2 for additional details).
Errors due to truncation of the multipole expan-
sion are implicitly assumed to be small, because
each higher order term is diminished by an addi-
tional power of the separation, r, appearing in the
denominator of each multipole term.

Second, we implement the absolute error crite-
rion of Salmon & Warren (1994) (the ’SW’ MAC),
who derive explicit limits on the errors due to se-
ries truncation. A node, j, is acceptable for use in
the gravity calculation if

r2
ij >

hi +
hj

2
+

√

h2
j

4
+

√

3TrQj

θ

2

(40)

where θ is a value defining the maximum absolute
error in the acceleration that a single node may
contribute to the sum and Qj is the quadrupole
moment tensor for node j. When the quadrupole
moment is zero, this criterion reduces exactly to
the geometric MAC above with its θ defined to
be unity, defining a simple separation criterion.
We note here also that the original formulation of
Salmon & Warren (1994) includes the possibility
of including the size of the particle, hi, directly
in the term under the square root. Instead, we
choose the form in equation 40 in order to make
possible a single calculation of the MAC definition
for each node prior to any tree traversals.

Finally, we implement the MAC discussed in
Springel et al. (2001), which we refer to as the
‘Gadget’ MAC, and which uses an approximation
for the truncation error of the multipole expansion
at hexadecapole order to define an error criterion.
A form using an octupole order error formulation
can be derived, but is computationally costly for
modern computers because it contains a square
root, and is therefore not used. For the relative
error in the acceleration contribution of the node,
compared to the total acceleration at the last time
step their criterion is:

r6
ij >

Mjh
4
j

θ|aold|
(41)

where the gravitational constant implicitly present
in the formula is set to G = 1, aold is the value

15

of the acceleration for a particle at the last time
it was calculated and θ is a dimensionless max-
imum relative error in the acceleration to be al-
lowed to any acceptable node. Because it requires
a previous value of the acceleration, equation 41
cannot be used for the first calculation. Instead,
we use the geometric MAC of equation 39 with its
accuracy parameter set to θ = 0.5. Also, equa-
tion 41 may not ensure that particle and node do
not overlap in space, violating the separation con-
dition required for convergence of the multipole
summation. Therefore, when the Gadget MAC is
selected, we also require that equation 39, with its
parameter set to θ = 1, is satisfied.

4.2.1. The acceleration calculation

To compute the gravitational acceleration due
to each entry on the list of acceptable nodes
on some particle, i, users of VINE may choose
one of two options. First, they may choose to
sum the contributions from acceptable nodes and
atoms using a multipole summation truncated at
quadrupole order and computed on their general
purpose ‘host’ processor or, alternatively, they
may instead choose to compute the summations
to monopole order using a GRAPE coprocessor, if
one is available.

For the former, VINE sums the multipole se-
ries for each acceptable node using the unreduced
quadrupole moment formulation described in Benz
et al. (1990). Mathematically, the acceleration on
particle i due to node j is:

ai = Mjf(r)r +
f ′(r)

r
Qj · r

+
1

2

[

f ′′(r)

r2
r · Qj · r

+
f ′(r)

r

(

TrQj −
r · Qj · r

r2

)]

r

where the function f(r) = Gr−3, r= rj − ri and
Qj is the quadrupole moment tensor for node j.
No specific gravitational softening (see section 4.4)
is required in equation 42 because the criteria used
to determine the list of atoms ensures that no
nodes will require softening. Atoms are handled
independently and contribute only a monopole
term, softened according to the options discussed
below. The acceleration due to all atoms and

nodes together are summed to obtain the gravi-
tational acceleration acting on a particle, i.e. the
right hand side of equation 2.

4.3. GRAPE hardware

As noted above, VINE includes options to cal-
culate gravitational forces using GRAPE copro-
cessors if they are available, either in approxima-
tion or exactly. ‘GRAPE’ hardware (for GrAvity
PipelinE) to accelerate N -body calculations has
been developed by several collaborations in Japan
(Sugimoto et al. 1990; Fukushige et al. 1991; Ito
et al. 1991; Okumura et al. 1993; Makino et al.
1997; Kawai et al. 2000; Makino et al. 2003;
Fukushige et al. 2005, see also Makino & Taiji
1998 for a review), and has been used both by
them and by many others throughout the astro-
nomical community (see, e.g., Naab & Burkert
2003; Athanassoula 2003; Naab et al. 2006a; Mer-
ritt & Szell 2006; Portegies Zwart et al. 2006;
Berczik et al. 2006). This hardware is attractive
to users because it is a system of specialized com-
puter chips designed to perform a summation of
1/r2 force calculations very quickly using a highly
parallelized pipeline architecture. These chips are
combined onto a processor board which also hosts
all other other necessary functional units, includ-
ing memory, I/O controller, etc, and which is then
attached to a host computer, usually a desktop
workstation. which performs the rest of the calcu-
lations required in a simulation.

Two types of GRAPE boards exist, differenti-
ated by even or odd version numbers. GRAPE
boards with odd numbers have a less accurate nu-
meric format, so that the relative error of the to-
tal force on a particle is of the order of 2% for
GRAPE-3 (Okumura et al. 1993) and 0.3% for
GRAPE-5 (Kawai et al. 2000). For collisionless
systems, this imposes no problem for the time
evolution, as the errors are uncorrelated (Makino
et al. 1990). GRAPE systems with even ver-
sion numbers, such as GRAPE-2 (Ito et al. 1991),
GRAPE-4 (Makino et al. 1997) and the most re-
cent, GRAPE-6 (Makino et al. 2003) have higher
accuracy in their internal numeric formats and
were designed for simulating of collisional systems
like globular clusters.

VINE supports GRAPE-3, GRAPE-5 and
GRAPE-6 boards, the latter in both a full and
reduced size ‘MicroGRAPE’ form, also known as

16

’GRAPE-6A’ (Fukushige et al. 2005). The code
can use GRAPE boards for direct summation of
forces as well as a component in an approximate
tree based gravity calculation. We describe the
details of this approach in Vine2 after the tree
itself has been described in detail.

4.4. Softening the forces and potential

Simulations of physical systems depend on a
choice to assume that the system is either ‘col-
lisional’ or ‘collisionless’, corresponding to the
statement that the evolution of the system as a
whole is or is not strongly affected by the outcomes
of interactions between individual particles (‘col-
lisions’). In hydrodynamic systems for example,
collisions between individual atoms or molecules
matter only in the aggregate, as a pressure. In
N -body systems of galaxies for example, where
individual particles may in fact be stars rather
than atoms, a similar statement can be made if
the two body relaxation time is long compared to
the expected simulation time or the lifetime of the
system.

Even though the underlying physical systems
may be collisionless in the sense that no partic-
ular interaction affects the result, simulations of
them may not be because the number of particles
used in the simulation is typically many orders
of magnitude smaller than the actual number of
bodies in the real system. Particles in these sim-
ulations are actually meant to represent an aggre-
gate of some very large number of physical parti-
cles. Actual collisions between them, as individu-
als, are therefore unphysical. In order to recover
the collisionlessness of the physical system, forces
between particles must be ‘softened’ in some man-
ner or, in other words, the particles must be pro-
vided with an internal density distribution con-
sistent with their interpretations as aggregates of
many particles rather than as a distinct entity.

In practice, softening is achieved by modifying
the gravitational potential on small scales to avoid
the pure 1/r form and the associated numerically
infinite forces at small separations. The softened
form actually defines a mass density distribution
for each particle, so that they include an assump-
tion of some spatial extent, rather than that they
are point like objects. Using softening, the arti-
ficial close encounters between N -body particles
are suppressed and the particles evolve under the

action of the global gravitational potential created
by all particles.

4.4.1. Forms of gravitational softening in VINE

A long standing debate pervades the astrophys-
ical literature concerning how gravitational soft-
ening should be implemented in particle simula-
tions (see e.g. Merritt 1996; Bate & Burkert 1997;
Romeo 1997; Athanassoula et al. 2000; Dehnen
2001; Nelson 2006, and references therein for de-
tailed discussions). No form of softening so far
proposed exists which is free of defects and some
care must be taken to ensure simulation results do
not depend on the implementation of softening.
In practice, two alternatives are common; first to
use ‘Plummer softening’ and second to use a spline
based kernel, perhaps also with a space and time
dependent length scale. VINE implements both
options, via a user selectable switch.

Plummer softening defines the density function
of each particle to be a Plummer sphere, so that
the force on particle i due to particle j, at a dis-
tance rij = |ri − rj |, becomes

Fi = −
Gmimj

r2 + ǫ2
r̂ij , (42)

where r̂ij is the unit vector connecting particles i
and j. The potential is defined similarly as

Φ = −
Gmj

(r2
ij + ǫ2)1/2

, (43)

where ǫ is a softening length scale. Plummer soft-
ening was originally motivated by Aarseth (1963),
who used it in simulations of clusters of galaxies.
Its most compelling advantage is that it is sim-
ple to implement and computationally inexpen-
sive. Its major drawback is that it never converges
to the exact Newtonian potential at any separa-
tion.

Spline based softening defines the density func-
tion of a single particle using a predefined ker-
nel that extends over some finite region in a man-
ner not unlike that used to derive hydrodynamic
quantities in SPH. Although in principle any ker-
nel could be used, VINE implements the kernel
defined in equation 19, used for the SPH interpo-
lations. This kernel has the advantages that it has
compact support, i.e. for r > 2h it takes the ex-
act Newtonian form, that for hydrodynamic sim-
ulations with smoothing and softening set equal,

17

pressure and gravitational forces are nearly equal
and opposite on small scales (Nelson 2006), and
that for a given number of particles, errors in the
force calculation are smaller than that of many
other possible kernels (Dehnen 2001).

To specify the force on particle i due to particle
j, we apply Gauss’s law and integrate over the
kernel density distribution to obtain the fraction of
the source particle’s (j) mass enclosed by a sphere
with radius equal to the separation between them:

m̂(rij) = 4π

∫ rij

0

ρ(v)v2dv

= 4π

∫ rij

0

W (v, hij)v
2dv , (44)

where the density, ρ, is replaced by the softening
kernel W in the second equation, and v is as de-
fined in section 3. In 2D, a similar form for m̂j

can be defined but leads to a finite, non-zero force
at zero separation (Nelson 2006). VINE instead
modifies the form of the kernel in 2D to that pro-
posed by Nelson 2006, to avoid the inconsistency.
Given the modified definition of the source parti-
cle’s mass, the force and potential are defined by
the equations for Newtonian gravity:

Fi = −
Gmim̂j

r2
ij

r̂ij (45)

and

Φ = −
Gm̂j

rij
. (46)

Note that as two particles come closer (with-
out decreasing their softening lengths), the force
decreases to zero because the mass enclosed
decreases to zero, and that the force is anti-
symmetric with respect to interchange of i and
j. At great distances, m̂j becomes mj and the
exact Newtonian form is recovered.

Three softening variants are available in VINE,
via options specified at runtime. First, Plummer
softening may be selected with a fixed softening
length ǫ for all particles. When the GRAPE op-
tion (see section 4.1) is selected for gravitational
force calculation, this is the only option available
due to hardware constraints. Second, either ‘fixed’
or ‘variable’ kernel softening may be selected, with
the latter option affecting only the treatment of
SPH particles. If the fixed option is selected, each

SPH particle i is softened using a single soften-
ing length hi = ǫ, specified at run time for all
particles. After the gravity calculations are com-
pleted, smoothing lengths are reset to their locally
defined, spatially and temporally variable values
so that later hydrodynamic calculations may pro-
ceed. If the variable option is selected, the individ-
ual (and time varying) smoothing lengths of each
particle are used as individual softening lengths.
In both the fixed and variable kernel softening op-
tions, all N -body particles use the kernel and their
predefined (fixed) softening lengths hi. This alter-
native allows several species of N -body particles to
be included, each with their own (possibly differ-
ent) softening length.

Depending on the softening selection, either
terms from equation 42 or equation 45 (in the form
of accelerations) are summed over all particles de-
rived from the tree traversal to obtain the gravi-
tational acceleration acting on a particle, to be in
the right hand side of equation 2.

4.4.2. Spline softening and the connection with

SPH

Calculation of gravitational forces between
neighboring SPH particles requires the identifi-
cation of equation 19 as a density distribution,
a different and stronger assumption that its use
as an interpolation kernel in non-self gravitating
SPH. Two important consequences arise from the
identification. First, although there is no require-
ment that the hydrodynamical smoothing length
and the gravitational softening lengths are equal,
large force imbalances may develop if they are not,
due to the different assumptions about the mass
distribution within a single particle. The imbal-
ances require careful consideration because they
are consequences of the numerical assumptions,
not of the physical systems, but can catastrophi-
cally change the outcome of a simulation. We refer
the reader to Bate & Burkert (1997) and Nelson
(2006) for more detailed discussions, but note the
main conclusion of both is that more favorable
outcomes are obtained when gravitational soften-
ing and hydrodynamic smoothing lengths are set
to be equal.

Secondly, equation 44 will introduce fluctua-
tions into the potential energy of the system (and
of individual particles) when it is used with vari-
able smoothing lengths because the change in mass

18

distribution within a particle is not accounted
for in the potential when its smoothing length
changes. In most cases, the variation will be small
because it comes only from SPH neighbor parti-
cles, rather than from the entire mass distribu-
tion. However, in some cases it may be an im-
portant local or global effect, such as in uniformly
collapsing or expanding media, or in cases when a
small subregion collapses by many orders of mag-
nitude. This violation of energy conservation due
to smoothing length variations can be estimated
as (Benz 1990):

dH = −G
∑

i<j

mimj
∂Φ

∂hij
dhij . (47)

In principle this formula could be used to correct
the potential energy of SPH particles (but not
their accelerations), but we have not included it
in VINE because it requires an additional search
for neighbor particles, with its associated compu-
tational cost. We also note that a conservative
form of softening has recently been developed by
Price & Monaghan (2007), but this form has yet
to be implemented in VINE.

5. A third particle species: ‘star’ particles

Astrophysical systems frequently include mul-
tiple physical components with substantially dif-
ferent characteristics, embedded within and inter-
acting with each other. In this context, a com-
mon characteristic in astrophysical systems is the
interaction between a comparatively low density
gaseous medium and one or more stars. Such sys-
tems include, for example, a single star surrounded
by a gaseous circumstellar disk (Nelson et al. 1998,
2000), or cloud of gas in which one or many stars
form during the evolution (Bonnell et al. 2006).
For modeling simplicity, each component may re-
quire separate treatment in order to capture es-
sential physical phenomena peculiar to only one
without distorting the evolution of another, and
include explicit coupling terms to model their in-
teractions.

In addition to the capability to evolve systems
simulated in the purely N -body and SPH particle
frameworks already described, VINE also includes
the capability to model a third species of particles,
similar to N -body particles, but with additional
characteristics not present in the other types. This

species is designed to be used in models requiring
‘stars’ or other similar point masses in astrophysi-
cal systems. VINE evolves star particles using the
same integration method used for all other parti-
cles (section 2), and with the same time step crite-
ria, though different coefficients may be assigned.
They interact gravitationally with all other parti-
cles and with each other according to a softened
Newtonian force law, as described in section 4.4.
Because they may be many orders of magnitude
more massive than the other types of particles,
they are not included in the approximate, tree
based force calculation, but instead take advan-
tage of the fact that there will typically be a very
small number of such particles to obtain forces via
direct summation.

The principle difference between VINE’s im-
plementation of star particles and the simple N -
body particles already discussed is their ability to
‘accrete’ particles of the other two types, should
their trajectories bring them into close proximity.
If activated by a switch set by the user at run
time, VINE makes a check to determine whether
any particles have moved to within one smoothing
length, h∗, of each star after each timestep. When
individual time steps are used, both the accretor
and accreted particles must be at the end of their
time step, in order to maintain simplicity in the
code and the integration scheme. When a particle
is found, it is removed from the simulation and its
mass and momentum are added to the star. In or-
der to conserve the center of mass of the system,
the star particle is artificially moved to the com-
mon center of mass of the pair. Similarly, VINE
calculates the angular momentum of the star and
fluid particle around their common center of mass,
then adds it to the star as an internal ‘spin’, in or-
der for any later accounting of the system’s total
angular momentum to be conserved.

6. Cosmological Expansion

For simulations of large scale structure forma-
tion in the universe as well as for galaxy formation
simulations in a cosmological context, the under-
lying cosmological model has to be taken into ac-
count. The expansion of the universe on these
scales plays an important role and thus the equa-
tions of motion have to incorporate correspond-
ing terms. It is common practice to perform such

19

simulations in comoving coordinates. Some au-
thors have chosen to use yet different coordinates
for the integration, which were especially adapted
for the context of cosmological simulations, e.g.
Springel et al. (2001). For VINE, we wanted to
minimize of modifications necessary to take cos-
mological expansion into account in order to keep
the code as modular as possible. So we did not
follow the above approach and use comoving co-
ordinates for the integration. The modifications
are then limited to changing the equations of mo-
tion. The necessary terms are incorporated only
into the leapfrog integration scheme (see section
2.2). VINE is not designed to use the Runge-
Kutta-Fehlberg integrator described in section 2.1
for cosmological simulations. This, however, is not
a severe limitation as practically all other cosmo-
logical simulation codes make use of the leapfrog
scheme because it only requires one force calcula-
tion per time step.

We adopted an implementation where the only
modification is in the equation for the velocity up-
date in the leapfrog scheme, see equation 7, follow-
ing Efstathiou et al. (1985) and Bode & Ostriker
(2003). For completeness, we write again the full
set of equations for the leapfrog integrator with
cosmological expansion:

xn+1/2 = xn +
1

2
vn∆tn (48)

vn+1 =
1 − Hn+1/2∆tn

1 + Hn+1/2∆tn
vn

+
a−3

n+1/2

1 + Hn+1/2∆tn
gn+1/2∆tn (49)

xn+1 = xn+1/2 +
1

2
vn+1∆tn (50)

where a is the scale factor, H = ȧ/a the Hubble
parameter and g is the gravitational acceleration.
Indices n, n + 1/2 and n + 1 indicate quantities at
time tn, tn+1/2 and tn+1, respectively, and tn+1 =
tn + ∆tn.

The quantities a(t) and H(t) need to be com-
puted for every time step according to the cosmo-
logical model used. Their calculation is inexpen-
sive and does not significantly increase the total
time required for the integration scheme.

7. Boundary Conditions

In many contexts, simulations of entire physical
systems may be possible for many astrophysical
systems of interest. Other systems may be studied
only as some small subset of a larger whole, e.g.,
a cosmological simulation which naturally models
only a small portion of the universe. In either
case, a complete model requires that conditions at
the boundaries of the computational domain be
specified in order to model the influence of matter
from outside it.

For particle based simulations of entire systems,
‘free’ boundary conditions require no special treat-
ments because the fluxes of material, momentum
and energy are carried by the particles themselves.
Particles feel perturbations only from other parti-
cles already present in the simulation, not from
any specific boundary, and move into adjacent
to empty regions as conditions warrant. Other-
wise, such regions require no computational effort.
More complicated systems require active manage-
ment of particles near boundaries, with specific
treatments tailored to specific problems.

For the example cosmological simulations above,
the relevant treatment will be of a volume of space
surrounded by an infinite series of other, identi-
cal volumes, replicated in succession at greater
and greater distances in each direction from the
original. VINE includes a module to implement
periodic boundary conditions in this context and
we describe it below. Being much rarer in as-
trophysical contexts, we have chosen not to im-
plement reflecting boundaries, for which material
approaching some surface is repelled with identi-
cal velocity but opposite sign, although a template
routine has been included for this purpose.

7.1. Periodic Boundaries

When periodic boundary conditions are em-
ployed, all matter resides inside a simulation box.
The boundary conditions then imply that calcula-
tions of physical quantities, such as gravitational
forces, gas densities, etc. are carried out as if the
box were surrounded in every direction by a se-
ries of identical replicas, extending to infinite dis-
tance in all directions. Particles whose trajectories
pass through one of the box’s boundaries, entering
one of the replications, are artificially restored to
the original box on the opposite boundary. There-

20

fore, after every position update, VINE performs
a check for particles which have moved outside of
the box. If any such particles are detected, VINE
adds or subtracts the length of the box to the ap-
propriate position component of those particles,
effectively reinserting them on the opposite side
of the volume from the one from which they ex-
ited. Velocities are unchanged.

7.1.1. Gravitational Periodic Boundaries

Various treatments of gravitational periodic
boundary conditions in particle evolution codes
have been discussed in the literature. Most are
based on the Ewald method (Ewald 1921) and
we refer readers to Hernquist et al. (1991) for the
application to astrophysical particle simulations
(note however that their eq. 2.14b is missing a
factor |r − nL|, see Klessen 1997). The Newto-
nian potential of the particles is replaced by the
potential of an infinite, periodic replication of the
particles. Using Ewald’s method, the resulting
slowly converging sums for the potential and force
are replaced by two pairs of partial sums. One
contains the short range terms, and the other the
long range terms. Since the short range summa-
tions are carried out in real space and the long
rage sums in Fourier space, both converge quickly
and can thus be cut off after a small number of
terms.

Most practical implementations use a modified
force law for computing the forces from any node
or particle on the interaction list obtained from
traversing a tree (see e.g. Dave et al. 1997). In
conflict with such implementations, GRAPE hard-
ware can only compute Plummer’s force law with-
out any modifications, making periodic boundary
problems impossible if users wish to use GRAPE
hardware. In order to preserve the possibility of
the use of GRAPE hardware in VINE in all cases,
we have therefore chosen an alternate implementa-
tion of Ewald’s method (Klessen 1997). Instead of
modifying the gravitational force law for all inter-
actions inside the boundary box, the forces from
matter inside the simulation box is computed as
if no boundary was present, then all particles get
a correction force to account for the contributions
from neighboring boxes.

To determine the correction, VINE maps the
particles onto a grid using the CIC (Cloud-In-Cell)
scheme (see e.g. Hockney & Eastwood 1981), cre-

ating a density distribution on the grid, which is
then Fourier transformed. The result is convolved
with a Green’s function describing the correction
and then transformed back into real space. Fi-
nally, the forces and potential are mapped from
the grid back onto the particles, giving every par-
ticle the desired correction of the force and po-
tential at the particle’s location. Since the forces
from particles inside the box are still computed us-
ing the tree or GRAPE-tree combination as usual,
it is necessary to use a modified Green’s function
on the grid. This function is the usual Green’s
function for Ewald’s method minus the contribu-
tion of matter inside the simulation box. For a
detailed description of the method, we refer the
reader to Klessen (1997).

The computational cost of the calculation of the
correction terms is governed first by the grid res-
olution and second by the speed of the FFT algo-
rithm used. Experiments show that sufficently ac-
curate forces can be obtained if the linear density
of grid cells is at least twice that of the particles.
For example, if e.g. 643 particles are used, the grid
should at least have a resolution of > 1283. Most
publically available and vendor supplied numerical
libraries include some variant of fast, parallel FFT
algorithms. Rather than writing multiple variants
of our Ewald code for each of these libraries, we
link to the FFTW library (Frigo & Johnson 2005),
commonly available on most computing platforms,
in order to retain both maximum portability for
VINE and to realize high performance on all plat-
forms.

7.1.2. SPH Periodic Boundaries

Calculations of hydrodynamic quantities are al-
ways local in the sense that only neighboring par-
ticles contribute to any given particle’s hydrody-
namic quantities. No complex algorithms, such as
Ewald’s method for gravity, are required to deter-
mine forces due to particles in neighboring repli-
cations of the simulation box. The only change
that must still be made is to modify the definition
of the distance between pairs of particles, so that
particles located near a boundary see neighboring
particles from both sides of that boundary.

The required modification utilizes the fact that
no particle can be more distant from another than
one half of the box size in any direction. If it were,
its ghost particle in a neighboring box would in-

21

stead be chosen as neighbor because its separation
in that direction was smaller. We can therefore
define the separation in each direction as

δxij = xi − xj − L nint

(

xi − xj

L

)

(51)

where L is the box length and ‘nint’ stands for
the ‘nearest integer’ function and takes the value
of zero or ±1, depending on the value of its ar-
gument. With this definition, and accounting for
the periodicity of the box, the separation of a pair
of particles can be calculated simply as the dif-
ference between their natural coordinates, plus an
extra term which reduces to zero when the natural
separation is small. If the magnitude of their nat-
ural separation is larger than L/2, the box length
will be added or subtracted as appropriate. Com-
bining the separations in each of the coordinate di-
rections yields a distance. The computational cost
of the extra operations are quite small, and no ad-
ditional code infrastructure is required to handle
the existence and storage of actual ghost particles.
No additional infrastructure is required for neigh-
bor searches either, since equation 51 is trivially
generalizable to calculations involving tree nodes
as well. After neighbor identification and distance
calculations are complete, computations of all hy-
drodynamic quantities, whether involving the dis-
tance metric directly or indirectly, through the
SPH kernel (e.g. densities or velocity and pressure
gradients), proceed as in the case of free bound-
aries.

The definition of separation in equation 51 has
one minor side effect, that any particle so large
that it is a neighbor of both some other parti-
cle contained in the simulation volume and one or
more of that particle’s duplicates in neighboring
volumes will find only one instance of that particle.
Its duplicates will not be found. We consider this
situation to be extremely unlikely for any simula-
tion containing more than a few tens of particles,
and so neglect the possibility entirely.

8. Test Simulations

In this section we present various tests of the
code, demonstrating the capabilities of VINE for
SPH simulations as well as for N -body simula-
tions.

8.1. Adiabatic collapse of a cold gas sphere

Since Evrard (1988) the adiabatic collapse of
a cold, initially isothermal gas sphere under its
own gravity has been a widely used test case for
SPH codes, see e.g. Hernquist & Katz (1989);
Steinmetz & Müller (1993); Hultman & Källander
(1997); Carraro et al. (1998); Springel et al. (2001);
Thacker et al. (2000). Adopting a similar setup as
these authors, we simulate the collapse of a spher-
ically symmetric gas cloud with density profile

ρ(r) =
M

2πR2

1

r
(52)

where M is the total mass of the cloud and R is
its maximum radius. For simplicity we choose a
unit system with G = M = R = 1, again similar to
previous authors using this test case. The particles
are initially at rest and have an internal energy per
unit mass of u = 0.05 GM/R and the specific heat
ratio is γ = 5/3.

Once released, the system undergoes rapid col-
lapse from inside out and reaches maximum com-
pression at t ≈ 1.1. Slightly before this time,
enough kinetic energy has been converted into
heat to build a pressure supported core in the cen-
ter. Material that falls in later bounces off this
core and is accelerated outward, forming a strong
shock wave which interacts with the still infalling
outer portion of the sphere.

The simulations presented below were run using
the Gadget MAC (equation 41) for the tree with
θ = 10−4. We used the spline kernel, equation 19,
with a fixed length scale h = 0.02 for softening
the gravitational potential of the particles. The
hydrodynamic smoothing length was adaptive, so
that each particle retains ≈ 50 neighboring parti-
cles (see section 3.2) at all times. The individual
time step scheme described in section 2.4 was used
for all runs. The parameters for the time step cri-
teria (see equations 11, 12, 13, 36 and 37) were
τacc = τvel = τva = 1, τCFL = 0.3, τh = 0.15.
All runs were performed with the leapfrog inte-
grator and some of them as well with the Runge-
Kutta-Fehlberg integrator, with the latter using
τRKF = 10−5 (see equation 16). However, the
difference between the two integration schemes is
very small (see below), so we focus on the leapfrog
simulations for most of the analysis presented here.

22

Fig. 2.— Time evolution of the total internal, kinetic and gravitational energy of the collapse test case.
Resolution ranges from 5000 particles to 80000 particles, as shown in the box, with a run including 640000
particles run as a reference standard.

8.1.1. Fixed Artificial Viscosity

The evolution of potential, kinetic and internal
energies of the system is shown in figure 2. The
simulations have been performed at four different
resolutions, using 5000, 10000, 40000 and 80000
particles. In addition, we have also run a sim-
ulation with 640000 particles as an internal refer-
ence standard against which the other runs can be
compared. This will make it easier to assess the
convergence of the simulations with increasing res-
olution and the effect of resolution on dissipative
effects.

Comparing the 40000 and 80000 particle runs
around the time of maximum compression (0.7 <
t < 1.5), no energy component is different from
the corresponding value in the other simulation
by more than a few percent, with the largest dif-
ferences coming near t ∼ 1.1, when the gas is
maximally compressed. Close examination of the

curves show that slightly larger differences be-
tween these two simulations and the much higher
resolution reference standard are present. For ex-
ample, near maximum compression, the reference
run has converted somewhat more gravitational
energy into internal energy than any of the lower
resolution realizations. We believe this occurs
because the correspondingly lower dissipation at
high resolution allows for higher infall velocities
and correspondingly higher gas compression when
the kinetic energy is converted into thermal en-
ergy. For the same reasons, the peak compression
time occurs earlier as well.

During the equilibration and late stage adia-
batic expansion phase of the system, after t ≈ 1.5,
differences between the 40000 and 80000 particle
runs relative to the 640000 particle run become
more pronounced. At progressively higher resolu-
tion, more energy remains in the form of internal

23

Fig. 3.— Time evolution of the relative error in
total energy for the runs shown in figure 2.

energy, while the gravitational potential energy re-
mains more negative, indicating that the gaseous
core formed from the collapse is hotter and more
tightly bound at higher resolution than lower. The
largest deviations between the reference standard
and either the 40000 or 80000 particle realizations
occur between 1.5 ≤ t ≤ 2, and thereafter de-
crease. Even at these times, the differences re-
main no larger than ∼ 5%, and we consider them
to be well resolved, for the purposes required for
this test.

At the lower resolutions of 5000 and 10000 par-
ticles, the internal and gravitational potential en-
ergies deviate from the 80000 particle run values
by ∼ 10 − 15% at maximum compression, with
even larger systematic deviations at late times.
These realizations have clearly not reached the
level of convergence to the proper solution that
is visible in the higher resolution runs.

The relative differences of a run integrated with
the Runge-Kutta-Fehlberg integrator (not shown)
as compared to a corresponding leapfrog run were
never more than 0.63% in the internal energy,
0.44% in the kinetic energy and 0.40% in the grav-
itational energy. The corresponding difference in
total energy reached a maximum of 0.32%. We do

not consider these differences to be highly signif-
icant and so in the remainder of our discussions,
we will present only the results of the simulations
using the leapfrog scheme.

Figure 3 shows the relative error in total en-
ergy as a function of time, for each of the four
realizations at differing resolution and our high
resolution reference standard. In every case, the
errors peak near t ≈ 1.1, corresponding to the
most compressed state of the system. Specifically,
the maximum errors in total energy are 0.84%,
0.91%, 0.93% and 0.86% for the resolutions of
5000, 10000, 40000 and 80000 particles, respec-
tively. Although we have observed error peaks
both in these simulations and in those of other
systems (see e.g. figures 10 and 11, below), their
origin remains unclear. We have been unable to
remove them completely through any combination
of integrator or force accuracy settings, though
their magnitude changes somewhat, while retain-
ing computationally affordable simulations. Nev-
ertheless, the overall magnitude of the error peak
is small compared to ambiguities and shortcom-
ings in the physical models of most systems of
interest in astrophysical contexts, and we believe
that the level of energy conservation produced by
the code will be sufficient to model such systems
accurately.

After peak compression, the errors fall to 0.7%,
0.74%, 0.67% and 0.57%, respectively, and remain
nearly constant for the remainder of the evolution.
The 640000 particle reference run reaches much
lower errors: 0.65% at peak and 0.21% during the
later phases of the simulation. Since both the in-
tegration accuracy parameters τi, τCFL, τh and
τRKF and the MAC setting for the gravitational
force calculations were standard values and not
particularly tuned for very accurate time integra-
tion, we believe this level of energy conservation
is quite acceptable. Decreasing these parameters
easily leads to energy conservation to ∼ 0.25% or
better throughout the simulation.

8.1.2. Time dependent Artificial Viscosity

We have also used this test case to study the
differences due to use of the time dependent im-
plementation of the artificial viscosity (AV), as de-
fined in equation 29. In this test, we study sim-
ulations at a single resolution of 80000 particles
and vary the implementation of artificial viscosity.

24

Fig. 4.— Time evolution of the total internal, kinetic and gravitational energy of the collapse test case for
the model with 80000 particles, using different implementations for the artificial viscosity. In addition, a
high resolution reference run with 640000 particles is plotted as thick dash-dotted line.

For reference and comparison to the results above,
we also include the same 80000 particle simulation
shown in figure 2, characterized by an AV formu-
lation in its standard form (equation 26), with co-
efficients fixed at α = 1 and β = 2, and the Bal-
sara correction (equation 28). For comparison, we
also include the high resolution reference simula-
tion, with the same formulation. Models with the
time dependent AV coefficients (equations 29–31)
were run with different settings of the parameters
α∗ and δα, defining respectively, the value for the
time dependent AV coefficient in quiescent flow
and the scaled length over which that coefficient
decays to its minimum value.

Figure 4 shows the time evolution of the total
internal, kinetic and gravitational energy of the
system for the 80000 particle model without time

dependent AV and for four models at the same
resolution identical except for changes in the time
dependent viscous coefficients. The distribution of
energies among components varies by as much as
10-20% for different settings, with the two α∗ = 1
variations producing the largest differences during
and after peak compression. They are peculiar
in the sense that substantially less internal and
kinetic energies are generated, than in the fixed
coefficient case. This is due to the higher dissipa-
tion in the initial infall phase (t < 1), which acts
to slow the infall. The behavior appears quali-
tatively similar to that seen in the lower resolu-
tion variants in figure 2, for which we expect a
correspondence between the lower resolution and
higher dissipation. Since, for the parameters used,
the viscous coefficient will always be larger than
unity, the time dependent viscosity has the effect

25

Fig. 5.— Time evolution of the relative error in
total total energy for the runs shown in figure 4.

of lowering the effective resolution in the simula-
tion, but since it is expected to be used only with
a much smaller coefficient, the problem will not be
severe in practice.

Both models with α∗ = 0.1 produce similar re-
sults for all three energy components and, more
importantly, results which are very similar to the
model with fixed AV. Only at and shortly after
the maximum compression do differences appear,
most visibly in the kinetic and gravitational en-
ergy components, where more resides in kinetic en-
ergy than in the fixed AV case, and less (more neg-
ative) in the gravitational potential energy. The
differences from the 80000 run with fixed AV are at
most a few percent over the entire duration of the
simulation. More importantly, the models with
α∗ = 0.1 resemble our high resolution reference
run with 640000 particles better than the 80000
particle run with fixed AV. The effect of the time
dependent AV, when used with values of α∗ = 0.1,
is to simulate a higher resolution/lower viscosity
system, and is clearly a very desirable effect. Of
the two models with α∗ = 0.1, the one with δα = 5
is more similar to the 640000 particle reference
run. At maximum compression, the minimum in
the potential energy is not as deep as in the model
with δα = 2, and the correspondence between the

kinetic energies is closer as well. At late times,
the model with δα = 2 tends to higher (less neg-
ative) potential energies, in fact higher than both
the 640000 particle run and also higher than the
80000 run with fixed AV.

In figure 5, we show the relative error in total
energy for the four models with time dependent
AV, the fixed AV reference model and the high
resolution reference run. The high α∗ models have
larger errors than the model with fixed AV, with
the δα = 5 model coming slightly closer to the
fixed AV result than the δα = 2 model. The two
low α∗ models develop much smaller errors during
maximum compression, but after the peak, their
energy errors go in the opposite direction. At the
end of the simulation, the error of the α∗ = 0.1,
δα = 2 model reaches 0.9%, as large or larger than
the peak errors of both the fixed high α∗ models,
and is still growing. The model with α∗ = 0.1,
δα = 5 shows the best performance overall on this
problem. Interestingly, its energy error decreases
after maximum compression, similar to the corre-
sponding δα = 2 model, but becomes almost flat
and is 0.04% at the end of the simulation. At and
around the peak, its behavior is very similar to
the high resolution reference run. After t ≈ 1.2, it
falls to lower errors than the high resolution run,
but overall it is still the model with comes closest
to the 640000 particle reference run.

The differences seen in figures 4 and 5 are due
to the differences in the ability of one set of AV pa-
rameters to model shocks and compressions with
more fidelity than another. Because modelling
such shocks and compressions is very sensitive to
how AV is implemented in a code, we move now
to a closer examination of the radial density pro-
files of the simulations, in which we expect a shock
front to be clearly visible.

Figure 6 shows profiles at four times during
the evolution for each of the models, and figure
7 shows a close up view of the shock front at
t = 0.9. For comparison, each plot the result of a
one dimensional simulation of the same system us-
ing the Piecewise Parabolic Method (PPM) with
350 zones, taken from Steinmetz & Müller (1993).
We expect better AV behavior in the SPH runs
will be reflected in curves more similar to that ob-
tained from the PPM run. As an additional point
of reference, we also show the result of the 640000
particle run in the close up view of the shock front,

26

Fig. 6.— Radial density profile of the models shown in figure 4. The thick solid line represents results of
a PPM simulation by Steinmetz & Müller (1993). The upper two panels represent points in time before
maximum compression in the center, the lower left shows the system at maximum compression and the lower
right is after the shock wave has passed through most of the system.

shown in figure 7.

In every realization, the overall density profiles

are similar, with high densities in the center, a
discontinuity further out, and a decrease to low

27

Fig. 7.— Radial density profile of the shock wave
at t = 0.9. The thick solid line represents results of
a PPM simulation by Steinmetz & Müller (1993).

densities at the largest radii. The similarities give
confidence that the gross behavior of all variants
produce sensible results. There are differences spe-
cific to each realization however. For example, the
high viscosity models disagree most at the largest
radii, where the densities are overestimated rela-
tive to the PPM model, especially at late times
when the material is expanding freely. The low
viscosity and fixed AV models agree well with the
reference PPM curve there at all times. At small
radii, all the SPH models underestimate the cen-
tral density. The low viscosity models (α∗ = 0.1)
agree best, followed by the fixed AV and long de-
cay constant, high viscosity model and, worst of
all, the model with α∗ = 1 and δα = 2, for which
a peak density nearly a factor two below that of
the PPM run is observed. The central densities
agree with the PPM realization to within ∼ 3.7%
in the 640000 particle reference run at t = 0.75
(though are not plotted in figure 6, in order to
reduce clutter) and, at late times, this SPH run

actually overestimates the central density by as
much as 10%. Using the central density as a met-
ric, the models with 80000 particles used for this
AV test are not fully converged, but the similar-
ity between the PPM and SPH methods at higher
resolution indicate that they do converge to very
similar results, given sufficient resolution.

During the compression phase, the high vis-
cosity models show significant broadening of the
shock front, as is expected, but also an outwards
position shift of the foot of the shock with re-
spect to both the PPM results and the other SPH
models, especially visible in the t = 0.9 close up
view in figure 7. The low viscosity models re-
produce the shock front more accurately and at
the same radial position as the PPM model. In
front of the shock front (radially outwards), both
low viscosity models are very similar to each other
and to the fixed AV model, while behind it, the
α∗ = 0.1, δα = 2 model exhibits a much shal-
lower rise than it should. The longer decay con-
stant variant (α∗ = 0.1, δα = 5) shows a much
steeper profile there, but still not as steep as the
fixed viscosity version, which appears to be the
best reproduction of the shock front. The high
resolution model shows closest correspondence to
the PPM density curve at the foot of the shock,
but the high density side nearly over lies its lower
resolution cousin, also with fixed AV. Later, near
maximum compression (t = 1.05–lower left panel
of figure 6), simulations with all of the AV imple-
mentations misplace the shock front, to slightly
larger radii.

Given the behaviors we see in the shock struc-
ture and in both the components of the energy
and the conservation of total energy, we conclude
that the time dependent AV formulation allows a
simulation to be performed with dissipation from
artificial viscosity at a level comparable to that
of a much higher resolution simulation that does
not include such a formulation. Our results show
that the parameters α∗ = 0.1, δα = 5 should be
used for best results. Simulated with these pa-
rameters, our test system yielded the best overall
conservation of energy, closest correspondence of
all energy components to a high resolution, fixed
AV reference model, at the cost of a slightly more
broadened shock front, compared to a run with
fixed AV. Otherwise the shock capturing abilities
are comparable to the standard formulation with

28

fixed AV. In the absence of shocks, the time de-
pendent AV formulation yields better results than
the time independent formulation. Hence we favor
the use of the time dependent formulation.

These settings differ from those recommended
by Morris & Monaghan (1997), of δα ∼ 2 for the
decay length. Such differences illustrate the prob-
lem dependent nature of the settings themselves,
and are most likely consequences of the presence
of shocks of different strength in different prob-
lems. Users of VINE who wish to employ the time
dependent AV formulation may need to account
for such differences when choosing appropriate vis-
cous parameters.

8.2. Elliptical-Elliptical Merger Tests

The quality of hydrodynamic simulations with
VINE has been studied in detail in section 8.1. In
order to assess VINE’s ability to correctly evolve
N -body models, we compare the evolutionary tra-
jectory of models simulated with VINE and with
Gadget-2. We use a merger simulation of two ellip-
tical galaxies (a ‘dry merger’, see e.g. Naab et al.
2006a) as a test problem. As the gas fraction in
such systems is very low, a pure N -body repre-
sentation of the galaxies, or one including only a
small fraction of gas particles, is a realistic model.
The evolution of such a dry merger requires cor-
rect behavior of the code over a wide range of dy-
namical timescales. While the merger event itself
is short compared to the duration of disk galaxy
mergers, its correct simulation requires accurate
time integration of particle trajectories in a highly
time dependent gravitational potential, requiring
a wealth of interesting dynamical behaviors to be
accurately modeled. The correct simulation of
such a system is therefore a challenging test case.

The initial conditions for our tests are created
by setting two elliptical galaxies on a parabolic
orbit, which is a reasonably realistic setup for the
orbit in a cosmological context (Khochfar & Burk-
ert 2006). Each elliptical galaxy is understood to
be the remnant of a prior disk merger event whose
components had a 1:1 mass ratio and in which
each of the spiral galaxies consisted of a stellar disk
and bulge as well as a dark matter halo. We use
three somewhat different variants of this overall
setup, in order to allow us to derive parameters for
both codes that are reasonable for a wider range of
merger applications and are not fine tuned for just

one particular problem. The different mass ratios
and matter distributions in the galaxies provide
some confidence in this respect. We demonstrate
below that our choice of parameters, although de-
rived from a different merger morphology, still pro-
vides comparable energy conservation for our el-
liptical merger test case and also yields very good
agreement between the two codes regarding the
properties of the remnant galaxies.

8.2.1. Requirements for sensible code to code

comparisons

For any physical model sufficiently complex to
be interesting for anything more substantial than
an academic exercise, the only option for vali-
dating the numerical code used to simulate it is
to compare against results obtained from other
codes. In this sense, validation effectively assumes
that while those other codes have been developed
to solve the same set of equations, they have been
constructed differently enough, and have been val-
idated independently based on a sufficiently dif-
ferent set of criteria, to ensure that they are effec-
tively neutral standards against which the results
of another code can be measured. The question
of whether or not this assumption itself can be
validated is unlikely ever to be answered satisfac-
torily. Nevertheless, we will proceed as if it has
been, and compare the results of a simulation run
using VINE with the results of the simulation us-
ing the same initial conditions using the publicly
available and widely used code Gadget-2 (Springel
2005).

Of course, various input settings used for a par-
ticular simulation will directly affect both its ac-
curacy and the overall results that are obtained.
It is trivial to run one or both codes with inappro-
priate parameters for the given problem and thus
find disagreement in the results. Our first step
in making comparisons must therefore be to min-
imize the differences originating in different set-
tings by running an extensive set of tests prior
to the actual comparison of the elliptical merger
simulations that are our main interest. Only when
this process is complete can we attempt to charac-
terize results obtained from each code on an even
handed basis.

For our comparisons, VINE uses its leapfrog
integrator (section 2.2) with individual timesteps
(section 2.4) and the Gadget MAC (equation 41).

29

The Gadget-2 code uses similar, but not identi-
cal, schemes for each of these three choices. With
these choices given, there still remains a very large
number of additional degrees of freedom defining
all of the different code settings available to the
user, which are both different in each code and,
to the extent that a correspondence exists, may
require different values to produce results of simi-
lar accuracy. It serves little purpose to match the
settings of every one of these parameters, espe-
cially if the normal settings for one or the other
code are significantly different. Instead, we choose
to match the results of the codes to what we be-
lieve are among the two most crucial parameters:
first the gravitational force accuracy, as controlled
through the MAC parameter θ (equation 41), and
second, the tolerance parameters, τ , used in the
integration scheme (equations 11–13).

Even with only two parameters to adjust, some
differences are unavoidable. For gravity, VINE
uses a multipole series truncated at quadrupole
order and the hexadecapole based Gadget MAC
described in Springel et al. (2001), while Gadget-2
uses a monopole truncated series and a quadrupole
based form of the MAC. Each code will therefore
require different values of the MAC parameter θ
to obtain similar force accuracies. When the mass
distributions within a given tree node are very in-
homogeneous, as will certainly be the case in the
intermediate stage of this simulation, truncation
errors in the multipole summation will be system-
atically larger than for other distributions, result-
ing in larger errors for a given setting. In addition
to the MAC differences, both codes test whether
or not a particle and node overlap in space, but use
different procedures to define approximate sizes
for the nodes. While Gadget-2 errs conservatively
by requiring the particle to lie outside of a box
which is ∼20% larger than the actual node (see
equation 19 in Springel 2005), VINE uses a conser-
vative definition of the node size itself (see Vine2),
which also errs by over-estimating the node size.
Which variant yields the more efficient criterion is
not clear.

Looking at the time step criteria, Gadget-2 does
not use timestep criteria that include the velocity
(equations 12–13). Also the actual equation im-
plemented for the force criterion, equation 11, in-
cluded the tolerance parameter under the square
root. So we expect to find similar integration ac-

curacy for both codes at different values for the
accuracy parameters. For simplicity in the discus-
sion below, we will denote the accuracy parame-
ters with τacc, but actually include all three τ val-
ues in equations 11–13 in VINE (set to the same
value). We will use the same symbol, τacc, for
Gadget-2 to mean the single active accuracy τ pa-
rameter for Gadget-2, despite the different func-
tional form of its implementation.

8.2.2. Determining comparable integrator and

tree opening parameters for each code

In order to find corresponding θ and τ param-
eters for the two codes, we use lower resolution
merger setups than in our main comparison. Oth-
erwise, repeating each test many times as we con-
strain the acceptable parameter range would re-
quire prohibitively large amounts of computing
time, particularly for tests to determine τacc.

We constrain the values of the parameters using
a two step process. First we determine node open-
ing parameters which yield similar force errors for
the particles. For both codes, we require that less
than 1% of particles have gravitational force er-
rors ≥ 1% and that 99% of the particles have force
errors ≤ 0.2%. We use two limits in order to en-
sure both that the full distribution of errors is low
and also that a small tail of the distribution with
high errors does not adversely affect the simula-
tion outcome. For the second step, we use these
MAC values in several full simulations with each
code, in which we vary τacc and we require that
the error in total energy never exceed 1% at any
time during the simulation. While any particular
choice of error limits is somewhat arbitrary, some
choice must be made. These values reflect those
used most frequently in our production runs.

The initial condition used for the tests to con-
strain the MAC setting is a disk merger simulation
with a mass ratio of 3 : 1, in which the more mas-
sive galaxy is modelled with 60000 particles for
the stellar disk, 20000 for the stellar bulge, 20000
for the gaseous disk component and 120000 for
the dark matter halo. The disc has a gas fraction
of 10% and the bulge contains one third of the
total mass of the disc. The less massive galaxy
contained the same components, modelled with
one third as many particles in each. The galax-
ies are on a parabolic orbit. For more details of
the setup, we refer the reader to the merger se-

30

tups used in Naab & Burkert (2003) and Wetzstein
et al. (2007).

The setup was first simulated with VINE at
very high accuracy. From this reference run we
selected snapshots at three different times cor-
responding to the initial condition, just prior to
the merger so that one galaxy is located imme-
diately adjacent to the other, and a very late
stage, well after the strongest interactions between
the galaxies are complete. We will refer to these
three stages as the initial, intermediate and late
stages, respectively. For the VINE calculations,
accelerations for each snapshot were calculated di-
rectly from the code, with the results saved to files
for later analysis. In order to compare identical
mass distributions with the two codes, the three
snapshots of the reference run with VINE were
converted to a data format readable by Gadget-
2. Each converted snapshot was read in to the
Gadget-2 code which calculated the gravitational
forces for the particle distribution, again saving
the results for later analysis.

For all three stages, we investigated the relative
error in gravitational forces as a function of the
tolerance parameter θ used in the relevant MAC.
Our procedure of comparing three different stages
of the simulation still does not necessarily guaran-
tee that the force accuracy over the entire simu-
lation will remain comparable, but we have some
confidence that the deviations will not be too large
because we test three very different mass distribu-
tions, representative of the range of mass distribu-
tions covered by the simulation.

Figure 8 shows the error magnitudes for the me-
dian, 95% and 99% error limits for each code at
three different times in the simulations. As ex-
pected from the differences in the MAC defini-
tions, comparison of the error limits for the same
value of the opening criterion show that the limits
for VINE are not the same as those for Gadget-
2, with the latter being considerably larger. The
differences are reflected in the required opening
parameters: in order to fulfill the error limits de-
scribed above, we require a value of θ = 5 × 10−3

for VINE and θ = 2.5×10−4 for Gadget-2. The pa-
rameter value required for Gadget-2 lies well below
that at which the intermediate time error curve
diverges from the curves defining the intermedi-
ate and late time error distributions. Its value is
therefore not determined by any peculiarities of

the mass distribution which caused the divergence
in the first place and we do not expect that its
value will be significantly altered in other mor-
phologies.

Beyond the simple statement of the MAC pa-
rameters required for each code, it is of some inter-
est to examine figure 8 further, to study the differ-
ences between the codes and, hopefully, to better
understand the consequences various choices of the
criteria may have on the simulations.

For VINE, the error magnitudes for all three
limits follow similar patterns as functions of the
opening parameter, at all three times. The er-
ror distribution at the initial time lies somewhat
above those of the intermediate and late time dis-
tributions, presumably due to the smoother par-
ticle distribution present at that time compared
with that at later times. Even so, its error distri-
bution at the most permissive opening criterion for
which we obtained data terminates well below the
1% level. Also, the error distribution curves ap-
pear to decrease their slope at larger log θ values,
rather than continuing a linear increase. Detailed
tests discussed in Vine2 demonstrate that both
phenomena continue towards still larger θ values
and that the error limits never increase beyond
∼ 2 − 3%, even in the limit of a uniform density
(where we expect small force magnitudes due to
the greater level of cancelation of partial forces), a
fact that will be very beneficial in general for most
simulations.

For Gadget-2, the error distributions of the ini-
tial and late time particle distributions lie virtu-
ally on top of each other. The intermediate time
distribution deviates quite significantly, exhibiting
a substantial population of particles with force er-
rors approaching 10%–a level clearly unacceptable
for most simulations of astrophysical interest and
as much as a factor of several larger than either the
initial or late time distributions. Also, the error
limits for a given opening criterion do not appear
to reach any limiting values as θ increase towards
more permissive limits. These observations are im-
portant because they demonstrate that the node
opening criterion must be chosen with great care
in Gadget-2, if large errors are to be avoided.

With the MAC parameters defined, we turn
now to runs of a set of merger simulations in which
we varied the integration accuracy τacc. For this
test, we choose a lower resolution than in the de-

31

Fig. 8.— Relative errors of the gravitational forces as a function of tree node-opening criterion θ for VINE
and Gadget-2. From top to bottom, the median, 95% and 99% error values taken over all particles in each
simulation.

termination of the force tolerance above, as several
full simulations with each code are required to find
reasonable accuracy parameters. In addition, to
further our goal of finding parameters which are
not specifically tuned to a particular merger setup,
we use a different setup for these merger simula-
tions. Our criterion for sufficient integration ac-
curacy is to impose an upper limit on the error
in total energy, therefore we must define a model

with only N -body particles, rather than including
particles to model a gas component as well. Mod-
els which include gas require some mechanism to
cool the gas during the encounter in order to bal-
ance the expected heating due to shocks. Whether
the gas is allowed to cool radiatively or is modeled
with an isothermal equation of state (assuming a
balance between shock heating and radiative cool-
ing), the total energy of the system is not con-

32

Fig. 9.— Relative error in total energy for the low
resolution merger models, using various integra-
tion accuracy parameters τacc with Gadget-2.

Fig. 10.— Relative error in total energy for the
low resolution merger models, using various inte-
gration accuracy parameters τacc with VINE

served. In contrast, limiting the model to N -body
particles allows the model to retain (in theory at
least) the energy conservation condition required
to constrain our accuracy parameters.

We use an equal mass merger in which each
galaxy as modeled with 10000 particles for the
stellar disc, 2000 for the bulge and 20000 for the
dark matter halo. Again, we place the galaxies on
a parabolic orbit. We evolved this setup with both
VINE and Gadget-2, adopting the force accuracy
parameters θ from above and using different values
for the integration accuracy parameter τacc. We
first verify that with this choice for θ, the force
errors during the first close encounter, for which
the errors become largest, satisfy the same force
error limits defined above. Both the median error
and the 99% error limit are very similar to those
found in the more detailed study, providing some
confidence that our choice of parameters is indeed
suitable for a wider range of merger simulations.

In figures 9 and 10 we show the error in to-
tal energy for τacc ranging from 0.01 to 0.06 for
Gadget-2 and from 0.5 to 1.0 for VINE, respec-
tively. In all of the Gadget-2 simulations, the
curves exhibit a slow secular drift towards energy
loss from the system, with the magnitude of the
loss being larger for the more permissive integrator
settings. Interestingly, the pair of simulations with
τacc = 0.05 and 0.06 yield curves quite similar to
the other, with near identical magnitudes through-
out and only small relative variations as one curve
increasing or decreasing above or below the other
at different times in the simulation. A similar phe-
nomenon is present in the τacc = 0.02 and 0.03
pair, but with smaller magnitudes. Since for the
latter pair, the error magnitude of the τacc = 0.02
yields better behavior during the close encounters,
we choose this choice for the Gadget-2 code.

The overall shape of the energy error curves
for the VINE simulations are quite different from
those for the Gadget-2 runs. Instead of a sec-
ular drift, the errors peak at ∼1% above their
initial values at the first close encounter of the
two galaxies, then decrease to values below the
initial value as they move apart again. After a
second, smaller peak at the second encounter, the
curves for the most permissive integrator settings
slowly decrease further. The peak error magni-
tude appears quite insensitive to the integrator
setting, with all three choices yielding nearly the
same result. As noted briefly in our hydrodynamic
test problem above, we know of no specific fea-
ture either in the integrator itself, or in the cal-
culations of the gravitational forces, which would

33

lead to such behavior. After the main merger
events, the model with τacc = 0.5 shows only
very small evolution of the error. The least ac-
curate model, τacc = 1.0, clearly fails to meet our
limit of 1%. The one with τacc = 0.75 reaches
errors slightly above 1% at the peak, while the
one with τacc = 0.5 has less than 1% error at
the first encounter. Afterwards, its evolves with
much smaller errors than the other two. We there-
fore we adopt an integration accuracy parameter
of τacc = 0.5 for VINE.

8.2.3. Results of full scale merger simulations

run with VINE and Gadget-2

Using the above choices for the accuracy param-
eters θ and τ , we ran a series of full scale elliptical
merger models for 3.9 Gyr with both VINE and
Gadget-2. As above, the initial condition for the
tests is created by setting two elliptical galaxies on
a parabolic orbit. In these tests, the stellar disk,
bulge and a dark matter halo were modelled with
60000, 20000 and 120000 particles, respectively.
Therefore, each elliptical galaxy in our test simula-
tion consists of 160000 stellar particles and 240000
dark matter particles so that the entire simulation
contains 800000 particles. For more details, we
refer the reader to Naab et al. (2006a).

Figure 11 shows the evolution of the error in
total energy for both codes. The error behaviors
of the two codes correspond nearly identically to
that seen in section 8.2.2 above, but with smaller
magnitudes, as expected from the higher resolu-
tion models in this test. The maximum error in
the VINE simulation reaches ∼ 0.48% at the time
of the first close encounter, while in the Gadget-
2 simulation, it reaches 0.44%, at the end of the
simulation. Between and after the merger encoun-
ters, the energy error in VINE stays roughly the
constant, particularly at late times (after t ≈ 0.5,
while for Gadget-2, the error continues to increase
until the end of the simulation, though slowly.

A direct examination of the overall morpholo-
gies of the mergers at different times, and as re-
alized by the two codes, does not prove to be of
great use to compare differences in the evolution
provided by one code over the other. The features
of the merger as evolved using one are present in
the other, and we are not able distinguish between
them in any quantitative fashion. Instead, and in
order to compare the results of both codes more

Fig. 11.— Comparison of the relative error in to-
tal energy as a function of time for the elliptical
merger simulation.

Fig. 12.— Center of mass trajectories in the
orbital plane for the stellar component in each
galaxy. The symbols along the trajectories rep-
resent the following times in Gyr: 0.25, 0.5, 1.0,
1.25, 1.5, 2.0, 3.5

quantitatively, we explore the behavior of the cen-
ters of mass of the particles making up the stellar

34

component of each galaxy. The stellar component,
as the most luminous, is most interesting to com-
pare because it resides in the central part of the
galaxy and dominates the potential there. Track-
ing its behavior therefore means that we are track-
ing the dominant component of the most dynamic
region during the merger.

Figure 12 shows the center of mass trajectories
of the stellar component of both galaxies, as real-
ized by each code. The trajectories of the galaxies
simulated with VINE and Gadget-2 lie essentially
on top of each other at all times. We have also
plotted symbols along the trajectories to indicate
different epochs in the evolution which have been
chosen to sample the trajectories over a wide range
of evolutionary stages. The position of each snap-
shot along the trajectories also matches between
the Gadget-2 and the VINE simulation.

In each case, the two galaxies have a first close
encounter after which they move to larger dis-
tances again. Then they reach a maximum sep-
aration, turn around and approach each other
again and finally merge. During and after the
final merger, the center of mass trajectories of
the stellar components do not converge to a sin-
gle point, even though the galaxies as a whole
merge. Instead, they move apart as a consequence
of the asymmetric distribution and trajectories
of tidal debris well outside the newly formed el-
liptical galaxy (some ≈ 15% of the total stellar
mass) which was created both during the merger
simulation and assumed in the progenitor ellipti-
cals, themselves taken to be remnants of mergers.
The tidal debris is accelerated outward during the
merger event and thus the center of mass of the
star particles of a progenitor galaxy moves grad-
ually away from the center of the new elliptical,
as the tidal material moves to increasingly larger
distances. The center of mass of the system as a
whole is of course not affected by this behavior.

We conclude our comparisons of the Gadget-2
and VINE simulations by comparing the merger
remnant produce by each simulation. In figure
13 we plot the rotation curve of the galaxy and
its surface density profile. The circular velocity
profile of the simulations lie nearly on top of each
other for both stars and dark matter, as do the sur-
face density profiles over nearly their entire range.
Only in the outer regions of the galaxy, where reso-
lution begins to degrade, do very small differences

Fig. 13.— Rotation curve (upper panel) and sur-
face density profile (lower panel) of an elliptical-
elliptical merger. The solid lines are results using
VINE for the simulation, the dashed lines show
Gadget-2 results.

become visible. Thus the mass distributions of
both the luminous and the dark component of the
merger remnant agree well between the two codes.

Given the complexity of the problem and the
very different features and algorithms imple-
mented in the two codes, we conclude that both
codes agree very well on this demanding N -body
test case.

9. Performance of the Code

In Vine2 we present detailed timings of the
code on both serial and parallel test cases. Var-
ious optimizations to the code are described and
their effects on the performance of the code in-
vestigated. We will therefore leave our most de-
tailed discussions of the code’s performance for
Vine2, and perform only speed comparisons be-
tween VINE and Gadget-2, using the same simula-
tion used for the accuracy comparisons in section
8.2.3. The performance comparison to Gadget-2
will also serve as a frame of reference for the tim-
ings presented in Vine2.

35

Fig. 14.— Calculation rate in particles per second
for the gravitational force calculation of all 800000
particles in an elliptical-elliptical merger simula-
tion. The results are shown for different stages of
the simulation. Note that the force accuracy of
VINE in this test is slightly higher than that of
Gadget-2 and VINE calculates force and poten-
tial, while Gadget-2 only calculates the force. For
more details, see text.

9.1. Speed comparison of the gravity cal-
culation in VINE and Gadget-2

For this analysis we use snapshots of the simu-
lations output by each code at five different times
of the simulation, to account for variations in the
speed due to the different mass distributions, seen
at different times. We adopt the same node open-
ing criteria in section 8.2.2, which yielded the
same force accuracy for each. Specifically, we
used parameters of θ = 5 × 10−3 for VINE and
θ = 2.5×10−4 for Gadget-2, which guarantee force
errors of less than 0.2% for 99% of the particles.
As before, we convert an output dump from the
VINE version of the simulation to Gadget-2 for-
mat, and use that particle distribution in the rate
calculation, in order to eliminate ambiguities due
to differences in particle distribution in the calcu-
lations of the rates.

Figure 14 shows the speed for the gravitational
force calculation on all particles using these ac-
curacy parameters, using 8 processors of the SGI
Altix at the University Observatory, Munich, i.e.
8 Itanium 2 processors running at 1.5 GHz. The
snapshots at t = 0 is the initial setup, where the

two galaxies are still well separated. At t = 196
Myr, the galaxies have their first close encounter.
They pass by each other and their distance in-
creases until the turnaround point. The snapshot
at t = 525 Myr is shortly before this point. Then
they two galaxies merge and form a new ellipti-
cal. The snapshot at t = 1.25 Gyr is after the
merger but before the system has had time to re-
lax completely. The final snapshot st t = 1.97 Gyr
is at a very late stage when the newly formed sys-
tem has already largely relaxed. For the 5 snap-
shots from t = 0 to t = 1.97 Gyr the speed of the
gravitational force calculation using VINE ranged
between ∼ 65000 and ∼ 95000 particles per sec-
ond, while that using Gadget-2 ranged over values
slightly less than 20000 particles per second, yield-
ing speedups of a factor between 3.6 and 4.8 for
VINE over Gadget-2.

Before concluding that VINE’s gravity calcula-
tion is indeed faster than Gadget-2’s, we must be
certain that neither code settings, nor the details
of the calculations themselves have not unfairly
biased the comparison. We recall here again, that
although we have attempted to use code settings
that yield similar error limits for both codes at all
times, differences between the resulting error lim-
its will inevitably remain, both between the two
codes and for the same code at different times.
What affect do these variations have on the de-
rived rates?

For example, for the node opening parameter
settings used in our test, figure 8 shows that the
error limits for the Gadget-2 runs are nearly iden-
tical at all three times but for VINE, different
stages of the simulation clearly exhibit different er-
ror magnitudes. The intermediate and late stages
of the simulation have lower errors than what we
impose for the whole simulation. In principle, they
would allow a larger parameter setting at those
times if desired, increasing the calculation rate.
Since the error magnitudes for the Gadget-2 runs
are the same at all times, no similar tuning would
be possible there. Further, simply relaxing our er-
ror requirement itself does not appear advisable,
at least for this problem, because of the interme-
diate time curve’s divergence from the other two
curves, towards very much larger errors.

An additional difference is that VINE always
computes both the gravitational potential and the
force, while Gadget-2 computes only the force.

36

While it is possible for Gadget-2 to compute the
potential as well, it requires a second tree traversal
and computation, effectively doubling the time for
the combined calculation. Such a fundamental dif-
ference between the algorithms in the codes would
unfairly distort the comparisons between the tim-
ings in the two codes, so we compare the combined
force and potential calculation of VINE with the
force only calculation of Gadget-2.

Taken together, each of these restrictions on
the performance measurements should result in a
slight bias in favor of Gadget-2, making the actual
result favoring VINE even more significant. We
conclude that the calculation of the gravitational
forces in our test case is considerably faster with
VINE than with Gadget-2. The speed differences
between VINE and Gadget-2 also provide some
confidence that full simulations are also faster with
VINE than with Gadget-2, as the gravitational
force calculation which has been timed here typi-
cally consumes some 70% to 80% of the total time
required for a simulation. It is, however, extremely
difficult to make fair comparisons of the overall
speed of two codes for a full simulation, and we
have therefore not attempted to do so here. The
actual speed differences between codes will likely
vary somewhat between different problems. We
have little confidence that any node opening cri-
teria, or any integrator accuracy parameters set
to provide correspondence at one time, for one
problem, will result in similar enough time step
distributions over an entire simulation to allow a
fair or sensible comparison to be made. In spite
of these concerns, the results in hand demonstrate
that VINE will be an excellent choice for use in
efficiently solving most problems encountered in
astrophysical contexts.

10. SUMMARY

In this paper we have introduced VINE, a
hybrid N -body/SPH code which uses a binary
tree structure for the calculation of gravitational
forces. It is a very modular and flexible code which
allows the user to compile and use only those mod-
ules which are required for simulating the physics
of the problem at hand. This modular structure
also makes it fairly easy to exchange such mod-
ules for new ones if needed or to add others to
implement new physics or numerical features.

The code includes both a Runge-Kutta-Fehlberg
and a leapfrog integrator, which can be chosen by
the user at compile time. Both can make use of an
individual particle timestep scheme. We have de-
scribed the SPH implementation in VINE, includ-
ing details of the symmetrization and the scheme
for adapting the smoothing lengths. VINE in-
cludes the capability for calculating gravitational
or other long range forces using a tree structure
to organize and sort particles into near and far
interactions, and an outline of the techniques are
described here. We describe the implementation
of periodic boundary conditions used in both the
gravity and the SPH part of the code. Finally, we
demonstrate the capability of the code to accu-
rately simulate both hydrodynamic and N -body
problems using, in the first case, the collapse of a
gas sphere as a test problem and, in the second,
an elliptical-elliptical galaxy merger.

We have demonstrated that the code performs
well on a standard, but somewhat contrived, test
problem with a well known result. More impor-
tantly, we demonstrate that it performs well on
a full astrophysical simulation of the merger of
two elliptical galaxies, in comparison to the pub-
lically available Gadget-2 code. The performance
of the gravitational force calculation in this test,
the most costly component of simulations includ-
ing self-gravity, was far superior to that of Gadget-
2, ranging between 3.5-4.8 times faster, at different
times in the calculation.

10.1. Additional optimizations, features
and future directions

VINE, as it has been presented here and in
Vine2, will be released to the public under GNU
Public License. We hope that it will become a
useful tool for use on a wide variety of problems.
Due both to the features included in its base form
and the overall modular structure of its design,
we expect that it will not be overly burdensome
to adapt the code for use on other problems, or to
add additional features to it.

At present, the code exists in a flexible, ‘base’
version, which includes a number of basic physics
packages common in many astrophysical contexts,
but is by no means complete. We expect that
other workers will wish to incorporate packages
not included in the base version, or to make
changes to it, in order to advance their own re-

37

search goals. Already, we foresee additions that
are required to satisfy our own research goals, for
example. At the University Observatory in Mu-
nich, efforts are underway to develop modules to
implement radiative cooling, subgrid models for
star formation on galactic scales, stellar feedback,
black hole accretion, AGN feedback, inflow bound-
aries and ionizing radiation. These packages are at
many different stages of development, with some
essentially complete, and others merely in plan-
ning stages. VINE has also been the basis for
an implementation of the SPH method on special
purpose, reconfigurable hardware, so called FPGA
(F ield Programmable Gate Array) boards (Wet-
zstein et al, in preparation).

In current form, VINE’s SPH module does not
include strength and damage models needed to
simulation systems including solid bodies. In fu-
ture work, we intend to integrate into VINE such
a model, present in a much earlier cousin (Benz
& Asphaug 1995), for use in modern simulations
of, e.g., giant impacts between planetary bodies or
of asteroids on earth. These types of calculations
may also require different or more advanced treat-
ments of the hydrodynamics, such as are avail-
able using the Moving Least Squares Particle Hy-
drodynamics (MLSPH) approach of Dilts (1999,
2000), which may be substituted for VINE’s stan-
dard SPH module.

Other features of interest include alternate inte-
grators. The VINE framework could, for example,
be adapted to accommodate integrators specially
designed for use in highly accurate N -body simu-
lations (Aarseth 1999; Levison & Duncan 1994). A
KDK variant of the leapfrog integrator (Springel
2005) is also of great interest, due to its stability
properties and the fact that force calculations can
be parallelized with higher efficiency when used in
individual time step mode.

We expect that if VINE finds wide use in the as-
trophysical community, many other modules may
be developed, beyond those suggested here. We
hope that the code will be as useful to others in
the astrophysical community as it has been for us
so far.

10.2. Availability of the code

The code is available to the public under
GNU General Public License version 2 from the

authors or via download at the USM website:
http://www.usm.lmu.de and at the UKAFF web-
site: http://www.ukaff.ac.uk.

We wish to thank Willy Benz for his generous
gift to so many, over so many years, of his SPH
wisdom and the original code on which VINE is
based. Some of the computations reported here
were performed on the SGI Altix 3700 Bx2 super-
computer at the University Observatory, Munich,
which was partly funded and is supported by the
DFG cluster of excellence ”Origin and Structure
of the Universe” (www.universe-cluster.de). Other
computations and most of the code development
used facilities at the UK Astrophysical Fluids Fa-
cility (UKAFF). Portions of this work were car-
ried out under the auspices of the National Nu-
clear Security Administration of the U.S. Depart-
ment of Energy at Los Alamos National Labora-
tory under Contract No. DE-AC52-06NA25396,
for which this is publication LA-UR 08-0429. We
thank S. Khochfar and M. Bertschik for their ini-
tial work on the implementation of the periodic
boundaries. We thank Volker Springel for help
with the Gadget-2 code as well as making a fix for
a problem with the domain decomposition avail-
able to us. We thank Matthias Steinmetz for
making the PPM results of the collapsing sphere
test available to us. MW acknowledges support
by Volkswagen Foundation under grant I/80 040.
AFN wishes to thank UKAFF for financial sup-
port.

REFERENCES

Aarseth, S. J. 1963, MNRAS, 126, 223

—. 1999, PASP, 111, 1333

Athanassoula, E. 2003, MNRAS, 341, 1179

Athanassoula, E., Fady, E., Lambert, J. C., &
Bosma, A. 2000, MNRAS, 314, 475

Attwood, R. E., Goodwin, S., P., & Whitworth,
A. P. 2007, å, 464, 447

Balsara, D. S. 1990, PhD thesis, University of Illi-
nois

—. 1995, J. Comp. Phys., 121, 357

Bate, M. R., Bonnell, I. A., & Price, N. M. 1995,
MNRAS, 277, 362

38

Bate, M. R. & Burkert, A. 1997, MNRAS, 288,
1060

Bell, E. F., Naab, T., McIntosh, D. H., Somerville,
R. S., Caldwell, J. A. R., Barden, M., Wolf,
C., Rix, H.-W., Beckwith, S. V., Borch, A.,
Häussler, B., Heymans, C., Jahnke, K., Jogee,
S., Koposov, S., Meisenheimer, K., Peng, C. Y.,
Sanchez, S. F., & Wisotzki, L. 2006, ApJ, 640,
241

Benz, W. 1988, Comp. Phys. Comm., 48, 97

Benz, W. 1990, in Numerical Modelling of Nonlin-
ear Stellar Pulsations: Problems and Prospects,
ed. J. R. Buchler (Kluwer, Dordrecht), 269

Benz, W. & Asphaug, E. 1995, Computer Physics
Communications, 87, 253

Benz, W., Bowers, R. L., Cameron, A. G. W., &
Press, W. H. 1990, ApJ, 348, 647

Berczik, P., Merritt, D., Spurzem, R., & Bischof,
H.-P. 2006, ApJ, 642, L21

Bode, P. & Ostriker, J. P. 2003, ApJS, 145, 1

Bonnell, I. A., Clarke, C. J., & Bate, M. R. 2006,
MNRAS, 368, 1296

Burkert, A. & Naab, T. 2005, MNRAS, 363, 597

Burkert, A., Naab, T., & Johansson, P. H. 2007,
ArXiv e-prints, 710

Carraro, G., Lia, C., & Chiosi, C. 1998, MNRAS,
297, 1021

Dasyra, K. M., Tacconi, L. J., Davies, R. I.,
Genzel, R., Lutz, D., Naab, T., Burkert, A.,
Veilleux, S., & Sanders, D. B. 2006a, ApJ, 638,
745

Dasyra, K. M., Tacconi, L. J., Davies, R. I., Naab,
T., Genzel, R., Lutz, D., Sturm, E., Baker,
A. J., Veilleux, S., Sanders, D. B., & Burkert,
A. 2006b, ApJ, 651, 835

Dave, R., Dubinski, J., & Hernquist, L. 1997, New
Astronomy, 2, 277

Dehnen, W. 2001, MNRAS, 324, 273

Dilts, G. A. 1999, Int, J. for Num. Meth. in Eng.,
44, 1115

—. 2000, Int, J. for Num. Meth. in Eng., 48, 1503

Dolag, K., Vazza, F., Brunetti, G., & Tormen, G.
2005, MNRAS, 364, 753

Efstathiou, G., Davis, M., White, S. D. M., &
Frenk, C. S. 1985, ApJS, 57, 241

Evrard, A. E. 1988, MNRAS, 235, 911

Ewald, P. P. 1921, Ann. Phys., 64, 253

Ewell, M. W. 1988, PhD thesis, Princeton Univer-
sity

Fehlberg, E. 1968, NASA T.R., 287

Fletcher, C. A. J. 1997, Computational Tech-
niques for Fluid Dynamics, second edition edn.
(Springer-Verlag)

Frigo, M. & Johnson, S. G. 2005, Proceedings of
the IEEE, 93, 216, special issue on ”Program
Generation, Optimization, and Platform Adap-
tation”

Fukushige, T., Ito, T., Makino, J., Ebisuzaki, T.,
Sugimoto, D., & Umemura, M. 1991, PASJ, 43,
841

Fukushige, T., Makino, J., & Kawai, A. 2005,
PASJ, 57, 1009

Gingold, R. A. & Monaghan, J. J. 1977, MNRAS,
181, 375

—. 1982, J. Comp. Phys., 46, 429

Hernquist, L., Bouchet, F. R., & Suto, Y. 1991,
ApJS, 75, 231

Hernquist, L. & Katz, N. 1989, ApJS, 70, 419

Hockney, R. W. & Eastwood, J. W. 1981, Com-
puter Simulations Using Particles (McGraw-
Hill Inc.)

Hockney, R. W. & Hohl, F. 1969, AJ, 74, 1102

Hultman, J. & Källander, D. 1997, A&A, 324, 534

Ito, T., Ebisuzaki, T., Makino, J., & Sugimoto, D.
1991, PASJ, 43, 547

Jackson, J. D. 1975, Classical Electrodynamics
(Chichester, Toronto: John Wiley & Sons)

39

Jesseit, R., Naab, T., & Burkert, A. 2005, MN-
RAS, 360, 1185

Jesseit, R., Naab, T., Peletier, R. F., & Burkert,
A. 2007, MNRAS, 376, 997

Kawai, A., Fukushige, T., Taiji, M., Makino, J.,
& Sugimoto, D. 2000, PASJ, 52, 659

Khochfar, S. & Burkert, A. 2006, A&A, 445, 403

Klessen, R. 1997, MNRAS, 292, 11

Kutta, W. 1901, Zeitschrift für Mathematik und
Physik, 46, 435

Lattanzio, J. C., Monaghan, J. J., Pongracic, H.,
& Schwarz, M. P. 1986, SIAM J. Scient. Comp.,
7, 591

Levison, H. F. & Duncan, M. J. 1994, Icarus, 108,
18

Lia, C. & Carraro, G. 2000, MNRAS, 314, 145

Lombardi, J. C., Sills, A., Rasio, F. A., & Shapiro,
S. L. 1999, J. Comp. Phys., 152, 687

Lucy, L. B. 1977, AJ, 82, 1013

Makino, J., Fukushige, T., Koga, M., & Namura,
K. 2003, PASJ, 55, 1163

Makino, J., Ito, T., & Ebisuzaki, T. 1990, PASJ,
42, 717

Makino, J. & Taiji, M. 1998, Scientific Simula-
tions with Special-Purpose Computers : The
GRAPE Systems (Chichester , Toronto: John
Wiley & Sons)

Makino, J., Taiji, M., Ebisuzaki, T., & Sugimoto,
D. 1997, ApJ, 480, 432

Merritt, D. 1996, AJ, 111, 2462

Merritt, D. & Szell, A. 2006, ApJ, 648, 890

Monaghan, J. J. 1985, Comp. Phys. Rep., 3, 71

—. 1988, Comp. Phys. Comm., 48, 89

—. 1989, J. Comp. Phys., 82, 1

—. 1992, ARA&A, 30, 543

Monaghan, J. J. & Gingold, R. A. 1983, J. Comp.
Phys., 52, 374

Monaghan, J. J. & Lattanzio, J. C. 1985, A&A,
149, 135

Morris, J. M. & Monaghan, J. J. 1997, J. Comp.
Phys., 136, 41

Naab, T. & Burkert, A. 2003, ApJ, 597, 893

Naab, T., Burkert, A., Johansson, P. H., & Jesseit,
R. 2007, ArXiv e-prints, 709

Naab, T., Jesseit, R., & Burkert, A. 2006a, MN-
RAS, 372, 839

Naab, T., Khochfar, S., & Burkert, A. 2006b, ApJ,
636, L81

Naab, T. & Trujillo, I. 2006, MNRAS, 369, 625

Nelson, A. F. 2006, MNRAS, 373, 1039

Nelson, A. F., Benz, W., Adams, F. C., & Arnett,
D. 1998, ApJ, 502, 342

Nelson, A. F., Benz, W., & Ruzmaikina, T. V.
2000, ApJ, 529, 357

Nelson, A. F., Wetzstein, M., & Naab, T. 2006,
ApJ, 0, 0

Nelson, R. P. & Papaloizou, J. C. B. 1994, MN-
RAS, 270, 1

Okumura, S. K., Makino, J., Ebisuzaki, T.,
Fukushige, T., Ito, T., Sugimoto, D.,
Hashimoto, E., Tomida, K., & Miyakawa, N.
1993, PASJ, 45, 329

O’Shea, B. W., Bryan, G., Bordner, J., Norman,
M. L., Abel, T., Harkness, R., & Kritsuk, A.
2004, in Adaptive Mesh Refinement - Theory
and Applications, ed. T. Plewa, t. Linde, &
V. Weirs, Lecture Notes in Computational Sci-
ence and Engineering (Springer-Verlag, Berlin
Heidelberg New York)

O’Shea, B. W., Nagamine, K., Springel, V., Hern-
quist, L., & Norman, M. L. 2005, ApJS, 160,
1

Portegies Zwart, S. F., Baumgardt, H., McMillan,
S. L. W., Makino, J., Hut, P., & Ebisuzaki, T.
2006, ApJ, 641, 319

Porter, D. 1985, PhD thesis, University of Califor-
nia, Berkeley

40

Press, W., Teukolsky, S. A., Vetterling, W., &
Flannery, B. P. 1992, Numerical Recipes, 2nd
edn. (Cambridge University Press, Cambridge)

Price, D. J. & Monaghan, J. J. 2004, MNRAS,
348, 139

—. 2007, MNRAS, 374, 1347

Rasio, F. A. & Shapiro, S. L. 1991, ApJ, 377, 559

Romeo, A. B. 1997, A&A, 324, 523

Rosswog, S., Davies, M. B., Thielemann, F.-K., &
Piran, T. 2000, A&A, 360, 171

Ryu, D., Ostriker, J. P., Kang, H., & Cen, R. 1993,
ApJ, 414, 1

Salmon, J. K. & Warren, M. S. 1994, J. Comp.
Phys., 111, 136

Springel, V. 2005, MNRAS, 364, 1105

Springel, V. & Hernquist, L. 2002, MNRAS, 333,
649

Springel, V., Yoshida, N., & White, S. D. M. 2001,
New Astronomy, 6, 79

Steinmetz, M. 1996, MNRAS, 278, 1005

Steinmetz, M. & Müller, E. 1993, A&A, 268, 391

Stone, J. M. & Norman, M. L. 1992, ApJS, 80,
753

Sugimoto, D., Chikada, Y., Makino, J., Ito, T.,
Ebisuzaki, T., & Umemura, M. 1990, Nature,
345, 33

Thacker, R. J., Tittley, E. R., Pearce, F. R.,
Couchman, H. M. P., & Thomas, P. A. 2000,
MNRAS, 319, 619

Thomas, J., Jesseit, R., Naab, T., Saglia, R. P.,
Burkert, A., & Bender, R. 2007, MNRAS, 381,
1672

Wadsley, J. W., Stadel, J., & Quinn, T. 2004, New
Astronomy, 9, 137

Wetzstein, M., Naab, T., & Burkert, A. 2007, MN-
RAS, 375, 805

This 2-column preprint was prepared with the AAS LATEX

macros v5.2.

41

