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1. Introduction

The solution of a set of linear algebraic equations

a11x1 + a12x2 + a13x3 + · · · + a1N xN = b1

a21x1 + a22x2 + a23x3 + · · · + a2N xN = b2

...
...

...
...

...

aM1x1 + aM2x2 + aM3x3 + · · · + aMN xN = bM

(1)

is the subject of this lab. Here there are M equations for the N unknowns xj. The

coefficients aij and the numbers on the right-hand side are assumed to be known. The

set of equations can be written in matrix form,

Ax = b. (2)

Note that we can swap rows without affecting the set of equations at all while swapping

the columns means that we need to change the ordering of the variables. In addition

we can form linear combinations of the equations without changing the information

content.

If the number of equations is larger than the number of unknowns (M > N) then the

system is overdetermined and can only be solved in the sense of a least squares fit. In

the opposite case (M > N) there is no unique solution. We thus restrict ourselves to the

case where M = N, the matrix A is square.

Even with M = N a solution is not guaranteed since the matrix might be singular,

i.e., its determinant might be zero. This happens when two or more rows are linear com-

binations of each other (row degeneracy) or the equations define one or more variables

only in a linear combination of each other (column degeneracy). For square matri-

ces column degeneracy implies row degeneracy and vice versa. Since our computer

arithmetic is only of limited numerical accuracy the equations we wish to solve can be

degenerate numerically even if the “true” equations are not.

Formally, as long as A is not singular, the solution may be written

x = A
−1

b, (3)

where A
−1 is the inverse of A. However, in most cases it is not necessary to obtain A

−1

explicitly since we can obtain a solution without it. There are several ways of doing

this, the first being Gaussian elimination which we discuss next.
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2. Gaussian Elimination

The easiest way to learn about Gaussian elimination is to see it in action. We solve the

set of equations

2x + 3y − 4z = 12

x + 5y − z = 12

3x + 7y − 3z = 20.

(4)

First we subtract half of row one from row 2 and obtain

2x + 3y − 4z = 12

0x + (7/2)y + z = 6

3x + 7y − 3z = 20.

(5)

Note that there is now a zero in the first column. We can do the same with rows 1 and

3, this time with 3/2 as the factor, to find

2x + 3y − 4z = 12

0x + (7/2)y + z = 6

0x + (5/2)y + 3z = 2.

(6)

The important thing here is that x no longer appears in the last two rows which we must

now solve for y and z. Subtracting 5/7 of row 2 from row 3 then gives

2x + 3y − 4z = 12

0x + (7/2)y + z = 6

0x + 0y + (16/7)z = −16/7.

(7)

The last equation now only contains z and can be solved trivially to give z = −1. Know-

ing z in row two allows us to solve for y, (7/2)y = 7, or y = 2, and finally the first row

implies that x = 1. Using the matrix form the reductions look like this:
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and we have saved a little space by writing the right hand side (RHS) as a fourth column.
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Thus we have

• reduced the initial matrix to triangular form.

• solved the system by back substitution.

The algorithm in the general case is then:

for all row i do

for all row j > i do

for all column k > i do

subtract lji = aji/aii times aik from ajk and bj

and store the result in ajk, bj

end for

end for

end for

for the reduction to U (for “upper”) form, followed by:

for all row i in descending order do

for all column j > i do

subtract aij times bj from bi

and store the result in bi

end for

bi = bi/aii

end for

4



There are a few points to note:

• the solution is performed in place so no additional storage is needed.

• in consequence both A and b are destroyed, occasionally a copy may be required.

• the necessary computation time is proportional to N3.

• since U is triangular the determinant is simply the product of the diagonal ele-

ments.

• as written, the algorithm is only applied to a single RHS but this is only for didac-

tic purposes. Any number of RHSs may be treated. In particular, setting b equal

to the unit matrix will give the inverse of A since the solution of

Ax = I

is

x = A
−1.

In fact, elements of A below the diagonal remain unchanged so that all the information

needed to reduce any given RHS is available. We can perform the U reduction for

A alone and later reduce and solve for b. This scheme is implemented in the pair of

routines lured /reslv (to be found in lured.f90 and reslv.f90).

There is one additional very important point about the algorithm as written:

It can fail!

To see why, we change our example slightly:
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.

If we try to divide by the diagonal element a11 we have a problem. The same could

happen if any of the aii are zero or very small compared to the non-diagonal elements.

The solution to this problem is pivoting.
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3. Pivoting

Pivoting is the re-ordering of the equations to avoid divisions by small or zero elements

during the reduction process. This is done by searching for the largest element in the

present column and bringing it onto the diagonal. Rows and columns that have already

been treated are not considered. Looking at the example again,
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(8)

we see that the largest element in the first column is 3 and it appears in the third row. So

we swap rows 1 and 3 to obtain
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(9)

and then proceed as before.

Here we have only looked for the largest element in the present column, the proce-

dure is called partial pivoting. Of course it is possible to look for the largest element

in the remaining sub-matrix, full pivoting. In this case, the 7 to be found in row 3 and

column 2 would be the chosen pivot. The two columns 1 and 2 and rows 1 and 3 would

then be swapped. The advantage in doing this, numerical stability in all cases, is far

outweighed by the disadvantages that the increase in bookkeeping brings with it. This

is particularly so since, in practice, partial pivoting is equally stable (artificial examples

can be constructed for which partial pivoting also fails).

It is instructive to look at a very simple example to see just how badly things can go

wrong. We imagine that we are computing to three significant figures and want to solve

the following system:
(

0.1 100

1 2

) (

x1

x2

)

=

(

100

3

)

. (10)

The usual procedure leads to the new system

(

0.1 100

0 −1000

) (

x1

x2

)

=

(

100

−1000

)

(11)

since the computation of 2 − 1000 and 3 − 1000 in three significant figures will yield

−1000 in both cases. Solving for x2 gives x2 = 1, which is correct, but for x1 we have

0.1x1 + 100 = 100 (12)

or x1 = 0, which is incorrect.
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Now we use pivoting which in this case simply implies that we swap the two rows:

(

1 2

0.1 100

) (

x1

x2

)

=

(

3

100

)

. (13)

Now the reduction leads to
(

1 2

0 100

) (

x1

x2

)

=

(

3

100

)

, (14)

and the solution for x2 is 1, while x1 is given by

x1 + 2 = 3 (15)

resulting in x1 = 1, which is also correct. It is the ratio of a11 to a12 which is important

here. The same situation can, in principle, occur in real applications but is somewhat

more unlikely since single precision delivers roughly 6.5 significant figures and double

precision something like 15. At some point, however, if the matrix is large enough,

rounding errors are capable of producing such a situation so partial pivoting at least is a

must.

Finally, we note that the numerical value of the pivot depends on the scaling of the

equations. We can multiply row 2 in our example (8) throughout by 1000, say, without

changing the actual solution vector. But in this case we would choose row 2 as the

pivot instead of 3. To deal with this, implicit pivoting can used. The pivot candidates

are chosen as if they were normalized so that the sum of the absolute values of the row

elements is 1. We look at
∣

∣

∣aij

∣

∣

∣

∑

k

∣

∣

∣aik

∣

∣

∣

. (16)

Turning again to our example, the sum of the elements in row 2 is 7 and the first factor

is 1/7. For row 3 the sum is 13, the factor is 3/13 so we would once again choose row 3

as our pivot.

The row interchanges may be represented succinctly by the use of a permutation

matrix P. For N = 2 the matrix

P =

(

0 1

1 0

)

(17)

swaps two rows as a simple test will show:

(

0 1

1 0

) (

a11 a12

a21 a22

)

=

(

a21 a22

a11 a12

)

. (18)

In the general case we notice that PI = P by definition so that P for any permutation

can be found simply by performing the same operations in the same order on the unit
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matrix I. For instance, the P corresponding to the exchange of row 1 with row 3 and

then row 2 with row 3 is given by

I =





















1 0 0

0 1 0

0 0 1





















swap 1 and 3
−−−−−−−−→





















0 0 1

0 1 0

1 0 0





















swap 2 and 3
−−−−−−−−→





















0 0 1

1 0 0

0 1 0





















= P (19)

Thus, having begun with the system

Ax = b, (20)

the row interchanges correspond to multiplication of both sides by P,

PAx = Pb, (21)

and it is this system of equations which is solved. As a final comment, it may be noted

that swapping two rows multiplies the determinant by −1, so that counting the number

of swaps allows the determinant to be determined.
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4. LU decomposition

The elements below the diagonal are zero by definition after the reduction. By leaving

them unchanged we were able to deal with any number of RHSs. There is however an-

other alternative: we can store the multiplicative factors lij in the appropriate elements.

Our example was




















2 3 −4

1 5 −1

3 7 −3





















, (22)

and we reduced the first column to 0 by subtracting 1/2 and 3/2 times the first row from

the second and third rows, respectively. We store these factors l21 and l31 in place of a21

and a31:




















2 3 −4

1/2 7/2 1

3/2 5/2 3





















. (23)

The final step (for this 3 × 3 matrix) was to subtract 5/7 of the second row from the

third. Our final matrix is




















2 3 −4

1/2 7/2 1

3/2 5/7 16/7





















. (24)

But what is the advantage in doing this? We complete the matrix below the diagonal

(L) with 1s on the diagonal and calculate LU (hence the name):





















1 0 0

1/2 1 0

3/2 5/7 1









































2 3 −4

0 7/2 1

0 0 16/7





















=





















2 3 −4

1 5 −1

3 7 −3





















, (25)

i.e., we have A = LU. Now we can solve

Ax = LUx = b (26)

in two stages: first we find y from Ly = b followed by x from Ux = y.
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The second equation is solved by the same algorithm as before:

for all row i in descending order do

for all column j > i do

subtract aij times bj from bi

and store the result in bi

end for

bi = bi/aii

end for

Since L is also triangular, the algorithm to solve Ly = b is similar:

for all row i in ascending order do

for all column j < i do

subtract aij times bj from bi

and store the result in bi

end for

end for

and we have explicitly set the diagonal elements to 1.
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In general L has only elements on and below the diagonal, we call them lij with the

understanding that lij = 0 for j > i. Similarly the elements of U are uij with uij = 0 for

j < i. This gives us N2 equations for N2 + N unknowns. They read

i < j : li1u1j + li2u2j + · · · + liiuij = aij

i = j : li1u1j + li2u2j + · · · + liiujj = ajj

i > j : li1u1j + li2u2j + · · · + lijujj = aij.

(27)

We are free to choose N of these unknowns and we set lii = 1. The solution is then

found using Crout’s algorithm:

for all column j in ascending order do

for all row i, i < j do

calculate

uij = aij −

i−1
∑

k=1

likukj (28)

end for

for all row i, i > j do

calculate

lij =
1

ujj















aij −

i−1
∑

k=1

likukj















(29)

end for

end for

Then uij is the reduced upper matrix and the lij are the corresponding multiplicative

factors as described above. For i = j the two equations are identical apart from the

division by the pivot element ujj so pivoting can be introduced by performing the U

reduction completely and then for i = j make the choice for the pivot and continue

with the L reduction. Subroutines implementing this scheme with implicit pivoting are

to be found in ludcmp.f90 and lubksb.f90 (from Numerical Recipes).
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5. Special cases

If you have information about the structure of the matrix you should use it, as the speed

and accuracy can be increased dramatically. In the solution of differential equations

using differencing, band matrices occur frequently. These are such that the matrix has

non-zero elements only in bands on and close to the diagonal. A diagonal matrix is the

simplest, the next simplest being a tridiagonal matrix and we look at this example in

more detail. The equations are

aixi−1 + bixi + cixi+1 = di (30)

with a1 = cn = 0. In matrix form this reads






















































b1 c1 0

a2 b2 c2
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...

dn−1

dn























































(31)

The solution is a simple application of the Gaussian elimination we saw earlier.

The first equation has solution

x1 = −b
−1
1 c1x2 + b

−1
1 d1 ≡ e1x2 + u1. (32)

The equation is written in this way because the system could be block tridiagonal with

ai, bi, ci matrices and xi, di vectors. Substituting this result into the second equation we

obtain
x2 = e2x3 + u2 (33)

e2 = −(b2 + a2e1)−1
c2 (34)

u2 = (b2 + a2e1)−1(d2 − a2u1) (35)

and in the general case

xi = eixi+1 + ui (36)

ei = −(bi + aiei−1)−1
ci (37)

ui = (bi + aiei−1)−1(di − aiui−1) (38)

For i = n we have cn = 0 and thus en = 0 and xn = vn. Having found vn, the equa-

tions (36) can then be used to derive all the xi, the back-substitutions. There are several

points to note here:

• a, b, c can be stored as vectors.

• The algorithm is now O(n).

• The algorithm can be extended to more bands in an obvious way.
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6. Astrophysical application

A star with mass not too different from that of our Sun will, at the end of its life, throw

off its outer envelope, leaving the remnant star to contract and heat up, then cool down

to ultimately become a white dwarf. The envelope will be illuminated by the hot star

and is observed as a planetary nebula. Planetary nebulae come in all shapes and sizes

as the pictures below show. They are of considerable interest since the elemental abun-

dances are representative of the outer layers of the star as the nebula was thrown off,

giving clues about stellar evolution. Also, since they have large diameters, they are

very bright and with their distinctive forbidden-line spectra (see below) they are easy

to spot in galaxies even well outside the local group. Their optical properties make

them good standard candles with well known physics allowing the Hubble constant to

be determined independently of Cepheids.

a) b) c)

d) e) f)

Figure 1: A selection of images of planetary nebulae from the HST. They are: a) Hb 5

“Hubble’s Double Bubble”; b) MyCn 18 “Hourglass Nebula”; c) IC 418 “Spirograph

Nebula”; d) M 57 “Ring Nebula”; e) NGC 6543 “Cat’s Eye Nebula”; f) NGC 2392

“Eskimo Nebula”.
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The physics of such a nebula is particularly simple. Photoionization by stellar pho-

tons is negligible to a first approximation due to geometrical effects (the nebula is large,

the star small) and densities are small so that photons escape immediately. Thus radia-

tive transfer need not be considered. Under such circumstances the strengths of well-

chosen line pairs can be used to give a direct measure of the temperature and the electron

density.

The strength of a spectral emission line is given by the particle number density ni of

the upper level multiplied by the transition probability Ai,

ji = ni Ai. (39)

The latter is an atomic physical quantity and can be taken as given. Normally ratios

of two lines belonging to the same ion are used, as in this case abundances and other

complicating factors do not play a rôle. Thus we have

ji

jj
=

ni Ai

nj Aj

(40)

and since the As are known, the line strength ratio depends on the population ratio ni/nj.

In thermodynamic equilibrium this ratio is given by the Boltzmann formula

ni

nj

=
gi

gj

exp

(

−

Ei − Ej

kT

)

, (41)

gi and gj being the statistical weights and Ei and Ej the excitation energies of levels i and

j, respectively. The Boltzmann constant is k and the temperature is T . Of course, ther-

modynamic equilibrium is not possible in a nebula but if the densities are high enough

so that collisional processes are more efficient than radiative ones, then Local Ther-

modynamic Equilibrium can apply and the Boltzmann formula can be used with local

values of the temperature, the line ratio does not depend on the density.

In the opposite extreme, at very low densities, every excitation of the atom by a

collision will lead directly to a line photon. Only collisions involving the ground state

(population n1) need be considered since none of the other levels will be significantly

populated. Thus we have

ni Ai = n1neq1i(T ) (42)

nj Aj = n1neq1j(T ) (43)

and the line ratio is given by
ji

jj
=

q1i(T )

q1j(T )
. (44)

There is again no dependence on the density ne. The collision rates q1i(T ) and q1j(T )

are calculated or measured by atomic physicists and are given. Normally, the downward
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rate

qi1(T ) =
8.629 × 10−6

gi T 1/2
Ω(T ) (45)

is to be preferred since Ω(T ) is a slowly varying function of temperature. The upward

rate is then given by detailed balance to be

q1i(T ) =
gi

g1

exp

(

−

Ei − E1

kT

)

qi1(T ). (46)

At intermediate densities the picture is more complicated and the populations must

be derived from the equations of statistical equilibrium. They simply balance the num-

ber of transitions into a level and those leaving it. So for a level i the equation reads

ni

∑

j

Pij =
∑

j

nj Pji. (47)

The sum extends, in principle, over all possible levels j but in practice only a few terms

are necessary. The transition rate Pij includes contributions from collisional Cij = neqij

and radiative processes but the latter are only to be included in the downward rates. For

three levels the three equations will read (n1 is the ground level):

n1(C12 +C13) = n2(C21 + A21) + n3(C31 + A31) (48)

n2(C21 + A21 +C23) = n1C12 + n3(C32 + A32) (49)

n3(C31 + A31 +C32 + A32) = n1C13 + n2C23. (50)

Note that these are linearly dependent as, for example, the third is equal to the sum

of the other two. So we need a further equation to close the system, e.g., for the total

number density N,

n1 + n2 + n3 = N. (51)

If we only deal with line ratios the actual value of N is not important. Having derived

T and ne from suitable line ratios, the element abundance N is determined separately

from the individual line strengths. This is a much more complicated question, however

(for instance, several ionization stages will need to be considered), and we shall not

investigate it here.

Instead we will look at line ratios in doubly (O iii) and singly (O ii) ionized oxygen,

the line ratios of which are temperature and density sensitive, respectively.
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6.1. Temperature-dependent O iii

Two lines will be sensitive to temperature if the respective upper levels have a large

energy difference. In O iii the lines at λλ4959, 5007 and λ4363 (see Fig. 2) have upper

levels 1D and 1S that are more than 20000 cm−1 apart. The ratio of the populations of

the two levels is proportional to the Boltzmann factor exp(−20000/kT ) which will be

sensitive up to temperatures where kT ≈ 20000 (with kT in cm−1). Since the electron

density only appears linearly in the equations, the exponential factor dominates.

The relevant atomic data are shown in Table 1. They have been taken from the

book on Gaseous Nebulae by Osterbrock. Of particular interest is the fact that all the

levels belong to the 2p2 configuration, the two valence electrons can both be labelled

with 2p. Transitions among the 5 levels are forbidden since no change in the electron

configuration takes place. As a consequence, the radiative transition probabilities are

very small, the largest is only 1.82 sec−1. For comparison, the transition probabilities

for allowed transitions are of order 108 sec−1. The small radiative probabilities allow

collisions to produce relatively large populations in the excited states even though the

electron densities are low (perhaps 103 cm−3). The collisional rates are so small that

the atoms are far from thermodynamic equilibrium so forbidden lines in emission are

among the strongest to be seen in Planetary nebulae as illustrated in Fig. 4.

5 ! Number of levels

3P0 1 0.0 ! For each level:

3P1 3 113.178 ! - a label,

3P2 5 306.174 ! - the statistical weight,

1D2 5 20273.27 ! - the energy.

1S0 1 43185.74

1 2 0.54 2.6e-5 ! For each pair of levels:

1 3 0.27 3.0e-11 ! - two indices,

1 4 0.24 2.7e-6 ! - the effective collision strength,

1 5 0.03 0.0 ! - the radiative transition probability.

2 3 1.29 9.8e-5

2 4 0.72 6.7e-3

2 5 0.09 0.22

3 4 1.21 2.0e-2

3 5 0.16 7.8e-4

4 5 0.62 1.8

Table 1: Input data for O iii.
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O iii

λ4363

λ5007

λ4959

λ2321

0
1

2

1S0

1D2

}

3P

Figure 2: Energy level (Grotrian) diagram for O iii. Solid arrows indicate line transitions

in the ultraviolet part of the spectrum, dashed arrows in the visual range, and dotted in the

infrared. The separation of the 3P levels has been exaggerated for clarity.

17



6.2. Density-dependent O ii

The levels of O ii all belong to the 2p3 configuration so that the lines are forbidden, as

was the case for the O iii. On the other hand, the energy level structure is completely

different (see Fig. 3). The energy levels appear in pairs, doublets. The ratio of the

strengths of the two lines from the 2D levels to the ground state is primarily sensitive to

the electron density. This is simply because the energy difference is only 20 cm−1, as can

be seen from Table 2, so that the Boltzmann factor, exp(−20/kT ), is approximately 1

even at very low temperatures. Thus there is almost no sensitivity to temperature.

As we shall see later, the ratio of the two lines and their wavelength separation is

small so that the observations are difficult, making O ii a far from ideal case.

As a final comment, the collision rates are in fact dependent on temperature and for

accurate work a table should be read in and interpolated upon. However, the principle is

the same, only the numerical values appearing in the rate equations are slightly different,

and we omit this detail here.

5 ! Number of levels

4S3_2 4 0.0 ! For each level:

2D5_2 6 26810.55 ! - a label,

2D3_2 4 26830.57 ! - the statistical weight,

2P3_2 4 40468.01 ! - the energy.

2P1_2 2 40470.00

1 2 0.80 3.6e-5 ! For each pair of levels:

1 3 0.54 1.8e-4 ! - two indices,

1 4 0.27 5.8e-2 ! - the effective collision strength,

1 5 0.13 2.4e-2 ! - the radiative transition probability.

2 3 1.17 1.3e-7

2 4 0.73 0.11

2 5 0.30 5.6e-2

3 4 0.41 5.8e-2

3 5 0.28 9.4e-2

4 5 0.29 1.4e-10

Table 2: Input data for O ii.
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O ii

λ3729

λ3726

3/2

3/2

3/2

5/2

1/2

4S

}

2D

}

2P

Figure 3: Energy level (Grotrian) diagram for O ii. Only the relevant transitions are shown.

Level separations have been exaggerated for clarity.
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Figure 4: An amateur spectrum of the Saturn nebula. Note the strength of the O iii (= O+2)

lines. (Credit: Mais Observatory.)
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7. Exercises

Exercise 1

Solve the equations

2w + 2x + 3y + 1z = 0

3w + 4x − 2y + 5z = 4

−5w + 5x − 1y − 2z = 3

−w − x − 3y + 3z = −2

(52)

using Gaussian elimination.

Exercise 2

Solve the same system of equations as before

2w + 2x + 3y + 1z = 0

3w + 4x − 2y + 5z = 4

−5w + 5x − 1y − 2z = 3

−w − x − 3y + 3z = −2

(53)

this time using LU decomposition.

Download the programs (la progs.tar) from the web page. When you have unpacked

the archive (tar xvf la progs.tar) you will have two directories, TEST and PN, and

we will begin with TEST. Enter the following

cd TEST

ifort -c precision.f90

ifort -o test *.f90

or

cd TEST

gfortran -c precision.f90

gfortran -o test *.f90

to compile the package. You should inspect the various subroutines to find out what they

do and how they do it. With the help of these notes this should be straightforward. Note

that ludcmp and lubksb have been taken from Numerical Recipes. You can change

from single to double precision by changing the value of the variable 1.e0 to 1.d0 in

precision.f90. Read the comments carefully for more information. Pay particular

attention to the warning about compiling the module first before the rest of the routines.
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You can start the program with

./test

and you will be offered 4 options:

1) fill the matrix with random values (default)

2) the hilbert matrix

3) a user-defined matrix: edit user.f90 first

4) read a matrix and a RHS from mat.dat

for each of the first 3 you will then need to give the size of the required matrix and which

pair ludcmp /lubksb or lured /reslv you wish to use.
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An intermezzo: the Hilbert matrix

The Hilbert matrix is a very strange beast. Its elements are easy to define,

Hij = 1/(i + j − 1), (54)

and its inverse has elements

(H−1)ij = (−1)i+j(i + j + 1)

(

n + i − 1

n − j

)(

n + j − 1

n − i

)(

n − i

i − 1

)2

, (55)

where the notation
(

n

j

)

is the binomial coefficient defined by

(

n

j

)

=
n!

j!(n − j)!
. (56)

The interesting property of the matrix is that its determinant is one divided by 1, 12,

2160, 6048000, 266716800000, and so on, making it an extremely stringent test for any

numerical linear algebra solution routine.

Table 3: Determinant of the first few Hilbert matrices.

n det(H)

1 1

2 8.33333 × 10−2

3 4.62963 × 10−4

4 1.65344 × 10−7

5 3.74930 × 10−12

6 5.36730 × 10−18
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Exercise 3

Perform the following in single precision:

a. Choose option 1 and compare the error for a number of matrix sizes (100s to

1000s) and for both algorithm pairs. How fast does it grow? Does the algorithm

become unusable? For these runs start the program with time ./test, take the

user entry as an indication of the computer time used. Plot this logarithmically

and compare the slope with the predicted value of 3. (Note that large matrices

may not fit into the available memory in which case the system will write data to

disk as needed, making the execution times much longer. This is called paging.

You can use the top command in another window to see if this is happening. CPU

usage below 90% for any period is a good sign that this is the case.)

b. Choose option 2 and compare the error for a number of matrix sizes and for both

algorithm pairs. Here the matrix size should be small (< 20).

c. Choose option 3 and for 3 different choices of matrix perform similar tests. You

will need to edit and change user.f90 appropriately and then recompile the pro-

gram (see above).

d. Option 4 is included chiefly for pedagogical purposes but with an appropriate

input data set you can check your answers from Exercises 1 and 2 (see mat1.dat).

Exercise 4

Perform the same tests as in Exercise 3 but in double precision and compare your results.

You will need to edit precision.f90 and recompile the program.

Exercise 5

Solve the following tridiagonal matrix.









































2 1 0 0 0

1 2 1 0 0

0 1 2 1 0

0 0 1 2 1
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(57)

Exercise 6

Write a subroutine to solve a tridiagonal matrix. Use this routine to check your solution

to Exercise 5.
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Exercise 7

For this exercise

cd ../PN

ifort -c precision.f90

ifort -o line *.f90

./line | tee output

The input is simple. You will be asked to calculate data for oii or oiii. Then for oiii,

which is temperature dependent, you should enter a density, while a temperature is

needed for oii. For each ion you should perform 2 or 3 runs with a different output file

for each run. Then plot your results for each ion, line intensity ratio versus temperature

for oiii and versus density for oii. Comment on your results.
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Advanced task 1

The subject of this lab has been to solve the set of linear equations

Ax = b. (58)

In fact, we have only found an approximate solution that satisfies the perturbed equation

A(x + δx) = b + δb. (59)

The difference between the two gives an equation for δx in terms of δb,

Aδx = δb, (60)

while δb is known from Eqn. 59,

Aδx = A(x + δx) − b. (61)

This last equation can be used to improve the current solution and may be applied itera-

tively. The A and b on the RHS are the original matrix and vector, so a copy is needed.

Since the RHS is the current error vector it must be calculated as accurately as possible,

double precision should be used.

Your mission, should you choose to accept it, is to write a subroutine to implement

this algorithm (no peeking in Numerical Recipes). You should use ludcmp /lubksb and

write a test program.

Advanced task 2

S ii and S iii are very similar to O ii and O iii in their atomic physical properties and so

can be used in a similar way to derive temperatures and densities. Construct input data

sets suitable for use with line. The necessary data are to be found in the appendix.

Advanced task 3

lured /reslv as written do not use pivoting. Modify them to use partial or implicit

pivoting. You may use ludcmp /lubksb as an example. Once more you should test

your routines to ensure that they are correct.
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8. Appendix

The energy level notation is 2S+1LJ, S being the total spin and L the total orbital angular

momentum (this is expressed as a letter whereby “S ” means L = 0, “P” means L = 1,

and “D” means L = 2). The total angular momentum is J = L+S . The statistical weight

of any level is simply 2J + 1 while the statistical weight of a term is (2S + 1)(2L + 1).

These weights are such that
∑

(2J + 1) = (2S + 1)(2L + 1). The electron configurations

(of O ii and S ii) are denoted by 2s22p3 and 3s23p3. They are not important here but the

fact that they are very similar means that the energy level structure is very similar and

that the two elements are chemically related.

Osterbrock has saved space in his tabulations by making use of some elementary

properties of the collision strengths. For instance the 3P ↔ 1D collision strength be-

tween the two terms 3P and 1D in O iii and S iii splits into three collision strengths

between the levels 3P0,1,2 ↔
1D2 according to the statistical weights:

Ω
( 3P0 ↔

1D2

)

=
(2J + 1)

(2S + 1)(2L + 1)
Ω

(

2S+1L↔ 2S ′+1L′
)

(62)

=
(2 · 0 + 1)

3 · (2 · 1 + 1)
Ω
( 3P ↔ 1D

)

(63)

=
1

9
Ω
( 3P ↔ 1D

)

(64)

and so on. We have used this to write out the tables in full. You can check your values

by comparing with the O ii and O iii numbers given in the text and the input data files.
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8.1. Atomic data for O ii and S ii

Table 4: O ii and S ii energy levels in cm−1 from the NIST website. Note the ordering.

O ii S ii

Configuration Level Energy Configuration Level Energy

2s22p3 4S3/2 0.0 3s23p3 4S3/2 0.0

2s22p3 2D5/2 26810.55 3s23p3 2D3/2 14852.94

2s22p3 2D3/2 26830.57 3s23p3 2D5/2 14884.73

2s22p3 2P3/2 40468.01 3s23p3 2P1/2 24524.83

2s22p3 2P1/2 40470.00 3s23p3 2P3/2 24571.54

Table 5: O ii and S ii radiative data (Einstein A coefficients in units of sec−1) from the book

Astrophysics of Gaseous Nebulae by Osterbrock.

Transition O ii S ii

4S3/2 ↔
2D5/2 3.6 × 10−5 2.6 × 10−4

4S3/2 ↔
2D3/2 1.8 × 10−4 8.8 × 10−4

4S3/2 ↔
2P3/2 5.8 × 10−2 2.2 × 10−1

4S3/2 ↔
2P1/2 2.4 × 10−2 9.1 × 10−2

2D5/2 ↔
2D3/2 1.3 × 10−7 3.3 × 10−7

2D5/2 ↔
2P3/2 1.1 × 10−1 1.8 × 10−1

2D5/2 ↔
2P1/2 5.6 × 10−2 7.8 × 10−2

2D3/2 ↔
2P3/2 5.8 × 10−2 1.3 × 10−1

2D3/2 ↔
2P1/2 9.4 × 10−2 1.6 × 10−1

2P3/2 ↔
2P1/2 1.4 × 10−10 1.0 × 10−6

Table 6: O ii and S ii collision strengths (Ω) from the book Astrophysics of Gaseous Nebulae

by Osterbrock. The collision strength is dimensionless.

Transition O ii S ii Transition O ii S ii

4S3/2 ↔
2D5/2 0.80 4.19 2D5/2 ↔

2P3/2 0.73 4.79
4S3/2 ↔

2D3/2 0.54 2.79 2D5/2 ↔
2P1/2 0.30 2.56

4S3/2 ↔
2P3/2 0.27 1.52 2D3/2 ↔

2P3/2 0.41 3.38
4S3/2 ↔

2P1/2 0.13 0.76 2D3/2 ↔
2P1/2 0.28 1.52

2D5/2 ↔
2D3/2 1.17 7.59 2P3/2 ↔

2P1/2 0.29 2.38
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8.2. Atomic data for O iii and S iii

Table 7: O iii and S iii energy levels in cm−1 from the NIST website. Here the ordering is the

same.

O iii S iii

Configuration Level Energy Configuration Level Energy

2s22p2 3P0 0.0 3s23p2 3P0 0.0

2s22p2 3P1 113.178 3s23p2 3P1 298.69

2s22p2 3P2 306.174 3s23p2 3P2 833.08

2s22p2 1D2 20273.27 3s23p2 1D2 11322.7

2s22p2 1S0 43185.74 3s23p2 1S0 27161.0

Table 8: O iii and S iii radiative data (Einstein A coefficients in units of sec−1) from the book

Astrophysics of Gaseous Nebulae by Osterbrock.

Transition O iii S iii

3P0 ↔
3P1 2.6 × 10−5 4.7 × 10−4

3P0 ↔
3P2 3.0 × 10−11 4.6 × 10−8

3P0 ↔
1D2 2.7 × 10−6 5.8 × 10−6

3P1 ↔
3P2 9.8 × 10−5 2.1 × 10−3

3P1 ↔
1D2 6.7 × 10−3 2.2 × 10−2

3P1 ↔
1S0 2.2 × 10−1 8.0 × 10−1

3P2 ↔
1D2 2.0 × 10−2 5.8 × 10−2

3P2 ↔
1S0 7.8 × 10−4 1.0 × 10−2

1D2 ↔
1S0 1.8 × 100 2.2 × 100

Table 9: O iii and S iii collision strengths (Ω) from the book Astrophysics of Gaseous Nebulae

by Osterbrock. The collision strength is dimensionless.

Transition O iii S iii Transition O iii S iii

3P0 ↔
3P1 0.54 2.64 3P1 ↔

1D2 0.72 2.80
3P0 ↔

3P2 0.27 1.11 3P1 ↔
1S0 0.09 0.40

3P0 ↔
1D2 0.24 0.93 3P2 ↔

1D2 1.21 4.66
3P0 ↔

1S0 0.03 0.13 3P2 ↔
1S0 0.16 0.66

3P1 ↔
3P2 1.29 5.79 1D2 ↔

1S0 0.62 1.88
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