
Real Programmers Don’t Use Pascal

Back in the Golden Era of computers, it was easy to separate the men from the boys

(sometimes called “Real Men” and “Quiche Eaters,” respectively). During this period,

the Real Men were the ones who understood computer programming, and the Quiche

Eaters were the ones who didn’t. A real computer programmer said things like “do 10

i=1,10” and “abend,” and the rest of the world said things like “computers are too

complicated for me” and “I can’t relate to computers—they’re so impersonal.” A pre-

vious work, B. Feirstein’s Real Men Don’t Eat Quiche, a 1982 Pocket Books publica-

tion, points out that Real Men don’t “relate” to anything and aren’t afraid of being im-

personal.

But, times change. Today, we are faced with a world in which little old ladies can get

computerized microwave ovens, 12-year-old kids can blow Real Men out of the water

playing Asteroids and Pac-Man, and anyone can buy and understand his very own per-

sonal computer. The Real Programmer is in danger of being replaced by high school

students with trash-80s!

There are, however, differences between the typical high school junior Pac-Man player

and a Real Programmer. Knowing these differences may give kids something to as-

pire to—a role model, a father figure. It will also help keep Real Programmers em-

ployed.

The easiest way to determine who the Real Programmers are is by the programming

language they use. Real Programmers use fortran. Quiche Eaters use Pascal.

Niklaus Wirth, the designer of Pascal, was once asked, “How do you pronounce your

name?” “You can either call me by name, pronouncing it ‘Veert,’ or call me by value,

‘Worth,’ ” he replied. One can tell immediately from this comment that Niklaus Wirth

is a Quiche Eater. The only parameter passing mechanism endorsed by Real Program-

mers is call-by-value-return, as implemented in the ibm/370 fortran g and h compil-

ers. Real Programmers don’t need abstract concepts to get their jobs done; they are

perfectly happy with a keypunch, a fortran iv compiler, and a beer. Real Program-

mers do list processing, string manipulation, accounting (if they do it at all), and artifi-

cial intelligence programs in fortran.

If you can’t do it in fortran, do it in assembly language. If you can’t do it in assem-

bly language, it isn’t worth doing.

Computer science academicians have gotten into a structured programming rut during

the past few years. They claim that programs are more easily understood if some spe-

cial language constructs and techniques are used. They don’t all agree on exactly

which constructs, of course, and the examples they use to show their particular point of

view inv ariably fit on a single page of some obscure journal. When I got out of school,

2 Real Programmers Don’t Use Pascal

I thought I was the best programmer in the world. I could write an unbeatable tic-tac-

toe program, use five different computer languages, and create 1,000-line programs

that worked. Then I got out into the real world. My first task was to read and under-

stand a 200,000-line fortran program, then speed it up by a factor of two. Any Real

Programmer will tell you that all the structured coding in the world won’t help you

solve a problem like that—it takes actual talent. Some observations on Real Program-

mers and structured programming:

• Real Programmers aren’t afraid to use gotos.

• Real Programmers can write five-page-long do loops without getting confused.

• Real Programmers like arithmetic if statements because they make the code more

interesting.

• Real Programmers write self-modifying code, especially if it saves them 20 nano-

seconds in the middle of a tight loop.

• Real Programmers don’t need comments; the code is obvious.

• Since fortran doesn’t hav e a structured if, repeat . . . until, or case state-

ment, Real Programmers don’t hav e to worry about not using them. Besides, they

can be simulated when necessary using assigned gotos.

Data structures have also been in the press lately. Abstract data types, structures,

pointers, lists, and strings have become popular in certain circles. Wirth, the Quiche

Eater, actually wrote an entire book (Algorithms + Data Structures = Programs, Pren-

tice Hall, 1976) that said you could write a program based on data structures, instead

of the other way around. As all Real Programmers know, the only useful data structure

is the array. Strings, lists, structures, and sets are all special cases of arrays and can be

treated as such without complicating your programming language. The worst thing

about fancy data types is that you have to declare them, and real programming lan-

guages, as we all know, hav e implicit typing based on the first letter of the six-charac-

ter variable name.

What kind of operating system is used by a Real Programmer? cp/m? God forbid.

After all, it is basically a toy operating system. Even little old ladies and grade school

students can use and understand cp/m.

Unix is a lot more complicated of course—the typical Unix hacker never can remem-

ber what the print command is called this week—but when it gets right down to it,

Unix is a glorified video game. People don’t do serious work on Unix systems; they

send jokes around the world on usenet or write adventure games and research papers.

No, the Real Programmer uses os/370. A good programmer can find and understand

the description of the ijk305i error he just got in his jcl manual. The great program-

mer can write jcl without referring to the manual at all. A truly outstanding program-

mer can find bugs buried in a six-megabyte core dump without using a hex calculator.

Real Programmers Don’t Use Pascal 3

os/370 is a truly remarkable operating system. It’s possible to destroy sev eral days’

worth of work with a single misplaced space, so alertness in the programming staff is

encouraged. The best way to approach the system is through a keypunch. Some peo-

ple claim there is a timesharing system that runs on os/370, but after careful study I

have come to the conclusion that they are mistaken.

What kind of tools does a Real Programmer use? In theory, a Real Programmer could

run his programs by keying them into the front panel of the computer. In the early

days, when computers had front panels, this was occasionally done. Your typical Real

Programmer knew the entire bootstrap loader by memory in hex, and toggled it in

whenever it got destroyed by his program. Back then, memory was memory—it didn’t

go away when the power went off. Today, memory either forgets things when you

don’t want it to, or remembers things long after they should be forgotten. Legend has

it that Seymour Cray, inv entor of the cray i supercomputer and most of Control Data’s

computers, toggled in the first operating system for the cdc 7600 on the front panel

from memory when it was first powered on. Cray, of course, is a Real Programmer.

One of my favorite Real Programmers was a systems programmer for Texas Instru-

ments. One day, he got a long distance call from a user whose system had crashed in

the middle of some important work. Jim repaired the damage over the phone, getting

the user to toggle in disk i/o instructions at the front panel, repairing system tables in

hex, and reading register contents back over the phone. The moral of this story: while

a Real Programmer usually includes a keypunch and line printer in his tool kit, he can

get along with just a front panel and a telephone in emergencies.

In some companies, text editing no longer consists of 10 engineers standing in line to

use an 029 keypunch. In fact, the building I work in doesn’t contain a single key-

punch. The Real Programmer in this situation has to do his work with a text editor

program. Most systems supply several text editors to select from, and the Real Pro-

grammer must be careful to pick one that reflects his personal style. Many people be-

lieve that the best text editors in the world were written at Xerox Palo Alto Research

Center for use on Alto and Dorado computers. Unfortunately, no Real Programmer

would ever use a computer with an operating system called Smalltalk, and would cer-

tainly not talk to the computer with a mouse.

Some of the concepts in these Xerox editors have been incorporated into editors run-

ning on more reasonably named operating systems, editors such as emacs and vi. The

problem with these editors is that Real Programmers consider “what you see is what

you get” a bad concept in text editors. The Real Programmer wants a “you asked for

it, you got it” text editor; one that is complicated, cryptic, powerful, unforgiving, and

dangerous. teco, to be precise.

It has been observed that a teco command sequence more closely resembles transmis-

sion line noise than readable text. One of the more entertaining games to play with

teco is to type your name in as a command line and try to guess what it does. Just

4 Real Programmers Don’t Use Pascal

about any possible typing error while communicating with teco will probably destroy

your program, or even worse, introduce subtle and mysterious bugs in a once-working

subroutine.

For this reason, Real Programmers are reluctant to actually edit a program that is close

to working. They find it much easier to patch the binary object code directly, using a

wonderful program called superzap (or its equivalent on non-ibm machines). This

works so well that many programs running on ibm systems bear no relation to the orig-

inal fortran code. In a number of cases, the original source code is no longer avail-

able. When it comes time to fix a program like this, no manager would even think of

sending anyone less than a Real Programmer to do the job—no quiche-eating struc-

tured programmer would even know where to start. This is called job security.

Some programming tools not used by Real Programmers include:

• Fortran preprocessors like mortran and ratfor. These Cuisinarts of program-

ming are great for making quiche.

• Source language debuggers. Real Programmers can read core dumps.

• Compilers with array bounds checking. They stifle creativity, destroy most of the

interesting uses for equivalence, and make it impossible to modify the operating

system code with negative subscripts. Worst of all, bounds checking is ineffi-

cient.

• Source code maintenance systems. A Real Programmer keeps his code locked in

a card file, because it implies that the owner cannot leave his important programs

unguarded.

Where does the typical Real Programmer work? What kind of programs are worthy of

such talented individuals? You can be sure that no Real Programmer would be caught

dead writing accounts-receivable programs in cobol, or sorting mailing lists for Peo-

ple magazine. A Real Programmer wants tasks of earth-shaking importance.

Real Programmers work for Los Alamos National Laboratory, writing atomic bomb

simulations to run on cray i supercomputers. They also work for the National Securi-

ty Agency, decoding Russian transmissions.

It was largely due to the efforts of thousands of Real Programmers working for nasa

that our boys got to the moon and back before the cosmonauts. Computers in the

Space Shuttle were programmed by Real Programmers, and these true professionals

are at work for Boeing, designing operating systems for cruise missiles.

Some of the most awesome Real Programmers work at the Jet Propulsion Laboratory

in California. Many of them know the entire operating system of the Pioneer and Voy-

ager spacecraft by heart. With a combination of large ground-based fortran pro-

grams and small spacecraft-based assembly language programs, they can do incredible

Real Programmers Don’t Use Pascal 5

feats of navigation and improvisation—such as hitting 10-kilometer-wide windows at

Saturn after six years in space, and repairing or bypassing damaged sensor platforms,

radios, and batteries. Allegedly, one Real Programmer managed to tuck a pattern-

matching program into a few hundred bytes of unused memory in a Voyager spacecraft

that searched for, located, and photographed a new moon of Jupiter.

One plan for the Galileo spacecraft is to use a gravity-assist trajectory past Mars on the

way to Jupiter. This trajectory passes within 80 ± 3 kilometers of the surface of Mars.

Nobody is going to trust a Pascal program or programmer for this kind of navigation.

Many of the world’s Real Programmers work for the U. S. Government, mainly in the

Defense Department. This is as it should be. Recently, howev er, a black cloud has

formed on the Real Programmer horizon. It seems that some highly placed Quiche

Eaters at the Defense Department decided that all Defense programs should be written

in some grand unified language called Ada. For a while, it seemed that Ada was des-

tined to become a language that went against all the precepts of Real Programming. It

is a language with structure, data types, strong typing, and semicolons. In short, it’s

designed to cripple the creativity of the typical Real Programmer. Fortunately, the lan-

guage adopted by DoD has enough interesting features to make it approachable—it’s

incredibly complex, includes methods for messing with the operating system and re-

arranging memory, and Edsger Dijkstra doesn’t like it. Dijkstra, as you should know,

authored “Gotos Considered Harmful,” a landmark work in programming methodolo-

gy applauded by Pascal programmers and Quiche Eaters alike. Besides, the deter-

mined Real Programmer can write fortran programs in any language.

The Real Programmer might compromise his principles and work on something slight-

ly more trivial than the destruction of life, providing there’s enough money in it. There

are several Real Programmers building video games at Atari, for example. But they

don’t play the games. A Real Programmer knows how to beat the machine every time

and there’s no challenge in that. Everyone working at LucasFilm is a Real Program-

mer because it would be crazy to turn down the money of 50 million Star Wars fans.

The proportion of Real Programmers in computer graphics is somewhat lower than the

norm, mostly because nobody has found a use for computer graphics yet. On the other

hand, all computer graphics is done in fortran, so there are some people doing

graphics to avoid writing cobol programs.

Generally, the Real Programmer plays the same way he works—with computers. He is

constantly amazed that his employer actually pays him to do what he would be doing

for fun anyway, although he is careful not to express this opinion out loud. Occasion-

ally, the Real Programmer does step out of the office for a breath of fresh air and a beer

or two. Here are some tips on recognizing Real Programmers away from the computer

room:

• At a party, the Real Programmers are the ones in the corner talking about operat-

ing system security and how to get around it.

6 Real Programmers Don’t Use Pascal

• At a football game, the Real Programmer is the one comparing the plays against

his simulations printed on 11-by-14 fanfold paper.

• At the beach, the Real Programmer is the one drawing flowcharts in the sand.

• A Real Programmer goes to a disco to watch the light show.

• At a funeral, the Real Programmer is the one saying “Poor George. And he al-

most had the sort routine working before the coronary.”

• In a grocery store, the Real Programmer is the one who insists on running the

cans past the laser checkout scanner himself, because he never could trust key-

punch operators to get it right the first time.

What sort of environment does the Real Programmer function best in? This is an im-

portant question for the managers of Real Programmers. Considering the amount of

money it costs to keep one on the staff, it’s best to put him or her in optimal environ-

ment.

The typical Real Programmer lives in front of a computer terminal. Surrounding this

terminal are the listings of every program he has ever worked on. These are piled in

roughly chronological order on every flat surface in the office. You will also find some

half-dozen or so partly filled cups of cold coffee. Occasionally, there will be cigarette

butts floating in the coffee. In some cases, the cups will contain Orange Crush. And,

unless he is very good, there will be copies of the os jcl manual and the Principles of

Operation open to some particularly interesting pages. Taped to the wall is a line-

printer Snoopy calendar for the year 1969. Strewn about the floor there will be several

wrappers for peanut butter-filled cheese bars (the type that are made stale at the bakery

so they can’t get any worse while waiting in the vending machine). Finally, in the top

left-hand desk drawer, underneath the box of Oreos, is a flowcharting template, left

there by the previous occupant. Real Programmers write programs, not documenta-

tion, which is left to the maintenance people.

The Real Programmer is capable of working 30, 40, even 50 hours at a stretch, under

intense pressure. In fact, he prefers it that way. Bad response time doesn’t bother the

Real Programmer; it gives him a chance to catch a little sleep between compiles. If

there is not enough schedule pressure on the Real Programmer, he tends to make

things more challenging by working on some small but interesting part of the problem

for the first nine weeks. Then he finishes the task in the last week, in two or three

50-hour marathons. This not only impresses his manager, but creates a convenient ex-

cuse for not doing the documentation. In general: no Real Programmer works 9 to 5,

except those on the night shift. Real Programmers don’t wear neckties. Real Pro-

grammers don’t wear high-heeled shoes. Real Programmers arrive at work in time for

lunch. A Real Programmer may or may not know his spouse’s name. He does, how-

ev er, know the entire ascii (or ebcdic) code table. Real Programmers don’t know how

to cook. Grocery stores aren’t often open at 3 a. m., so they must survive on Twinkies

and coffee.

Real Programmers Don’t Use Pascal 7

Looking to the future, some Real Programmers are concerned that the latest generation

of programmers are not brought up with the same outlook on life as their elders. Many

of them have nev er seen a computer with a front panel. Hardly anyone graduating

from school these days can do hex arithmetic without a calculator. Today’s college

graduates are soft—protected from the realities of programming by source level de-

buggers, text editors that count parentheses, and user-friendly operating systems.

Worst of all, some of these alleged computer scientists manage to get degrees without

ev er learning fortran! Are we destined to become an industry of Unix hackers and

Pascal programmers?

From my experience, I think it’s safe to report that the future is bright for Real Pro-

grammers. Neither os/370 nor fortran shows any signs of dying out, despite the ef-

forts of Pascal programmers. Even more subtle tricks, like adding structured coding

constructs to fortran, hav e failed. Oh sure, some computer vendors have come out

with fortran 77 compilers, but every one of them has a way of converting itself back

into a fortran 66 compiler at the drop of an option card—to compile do loops as God

intended.

Even Unix might not be as bad on Real Programmers as it once was. The latest release

of Unix has the potential of an operating system worthy of any Real Programmer. It

has two different and subtly incompatible user interfaces, an arcane and complicated

teletype driver, and virtual memory. If you ignore the fact that it’s structured, even

C programming can be appreciated by the Real Programmer. After all, there’s no type

checking, variable names are seven (10? Eight?) characters long, and the added bonus

of the Pointer data type is thrown in. That’s like having the best parts of fortran and

assembly language in one place, not to mention some of the more creative uses for

#define.

No, the future isn’t all that bad. Why, in the past few years, the popular press has even

commented on the bright new crop of computer nerds and hackers leaving places like

Stanford and MIT for the real world. From all evidence, the spirit of Real Program-

ming lives on in these young men and women. As long as there are ill-defined goals,

bizarre bugs, and unrealistic schedules, there will be Real Programmers willing to

jump in and solve the problem, saving the documentation for later. Long live for-

tran!

—Ed Post

Wilsonville, Oregon

(in: Datamation, July 1983, pp. 263–265)

