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Abstract. NLTE line formation calculations of Fe I in the solar atmosphere are extended to include weak lines in the visual
spectrum of the Sun. Previously established atomic models are used to discriminate between different ways of treating colli-
sional interaction processes. As indicated by the analysis of strong Fe I lines, the influence of deviations from LTE in the solar
atmosphere on the Fe abundance is small for all lines. To derive a common solar Fe I abundance from both strong and weak
lines fine-tuning of the microturbulence velocity parameter and the van der Waals damping constants is required. The solar Fe I

abundances based on all available f -values are dominated by the large scatter already found for the stronger lines. In particular
the bulk of the data from the work of May et al. and O’Brian et al. is not adequate for accurate abundance work. Based on
f -values measured by the Hannover and Oxford groups alone, the Fe I LTE abundances are log εFe i,� = 7.57 for the empirical
and log εFe i,� = 7.48 . . . 7.51 for the line-blanketed solar model. The solar Fe ionization equilibrium obtained for different
atomic and atmospheric models rules out NLTE atomic models with a low efficiency of hydrogen collisions. At variance with
Paper I, it is now in better agreement with laboratory Fe II f -values for all types of line-blanketed models. Our final model as-
sumptions consistent with a single unique solar Fe abundance log εFe,� ∼ 7.48 . . . 7.51 calculated from NLTE line formation
are (a) a line-blanketed solar model atmosphere, (b) an iron model atom with hydrogen collision rates 0.5 < SH < 5 times the
standard value to compensate for the large photoionization cross-sections, (c) a microturbulence velocity ξt = 1.0 km s−1, (d)
van der Waals damping parameters decreased by ∆ log C6 = −0.10 . . . − 0.15 as compared to Anstee & O’Mara’s calcula-
tions, depending on SH, (e) Fe II f -values as published by Schnabel et al., and (f) Fe I f -values published by the Hannover and
Oxford groups.
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1. Introduction

Our previous attempt to understand the formation of the iron
spectrum in cool dwarf stars (Gehren et al. 2001, Paper I) was
successful in isolating some of the important interaction pro-
cesses encountered in stellar atmospheres of spectral types F
and G. The compensating influence of (a) strong collisional
coupling of the highly excited (> 7.3 eV) Fe I terms to the a6D
ground state of Fe II, (b) hydrogen collision cross sections, and
(c) photoionization from the low-excitation terms was shown
to dominate the synthesis of line profiles and the abundances
of solar lines.

The lines used for the analysis were selected for strength
because it is planned to extend the investigation to extremely
metal-poor stars where the NLTE effects are predicted to be
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much more important. In such stars only lines are detected
that are strong in the Solar spectrum. The comparison of ob-
served solar flux spectra with synthesized line profiles is thus
hampered by all the problems usually occurring whenever line-
broadening starts to play a role.

The treatment of van der Waals damping had been based on
relatively simple approximations for a long time (Unsöld 1968,
Kurucz 1992), often resulting in significant underestimates of
the damping constant. For a treatment of NLTE effects this was
completely inacceptable, thus in Paper I we applied the quan-
tum mechanical calculations of Anstee & O’Mara (1991, 1995)
without any corrections. Although the results show substantial
improvements there were still multiplets for which corrections
would seem adequate from profile fitting. This is not easily ex-
plained although the calculations refer to simple LS coupling
schemes whereas some of the upper Fe I terms involved are af-
fected by mixing from different configurations. It appears that
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the Anstee & O’Mara damping constants in some multiplets
lead to line abundances that are slightly smaller than those ob-
tained from weaker lines.

Granular hydrodynamics are a second item that affects
our results (Asplund et al. 2000). Relying on horizontally ho-
mogeneous, plane-parallel atmospheric stratifications implies
that dynamic movements are replaced by approximate veloc-
ity fields, usually termed micro- and macroturbulence. For ob-
vious reasons such an artificial replacement could depend on
atmospheric depth as found in the empirical solar model of
Holweger & Müller (1974). Whereas such a stratification ξ(τ)
can in principle also be constructed for other solar models, this
is not always possible for other stars. Therefore, our fit to the
solar Fe I line spectrum was based on a single microturbulence
velocity ξ. The values assumed for the strong lines of Paper I
(ξt = 1.00 km s−1 for the empirical and ξt = 0.85 km s−1 for
the line-blanketed atmospheric model) were smaller than usu-
ally adopted for both types of model atmospheres. Thus, based
on turbulence lines alone (lines whose equivalent widths are
dominated by broadening due to microturbulence velocities),
the abundances derived for both Fe II and Fe I would be slightly
too high.

After having examined more than 100 strong Fe I lines aris-
ing from excitation energies between 0 and 5 eV including
some of the stronger turbulence lines we have found that com-
binations of certain atomic model properties lead to acceptable
solar flux profile fits if varying macroturbulence velocities Ξrt

(Gray 1977) are applied. Due to the fact that a plane-parallel
atmospheric model can not represent granular hydrodynamics
with infinite accuracy, we have not tried to improve our NLTE
profile fits beyond certain limits that are characterized by ∼ 1%
rms deviation from the observed fluxes. Yet it became clear that
atomic models with different strengths of collisional interaction
led essentially to similarly good fits. This could be explained
as a consequence of different Fe I abundances or uncertain f -
values and van der Waals damping parameters. Unfortunately,
the solar Fe II abundances are at least as uncertain due to sig-
nificantly different sets of f -values. Thus the solar ionization
equilibrium of iron could not be established because the abso-
lute abundances were uncertain from both ends.

As explained above part of the uncertainty remaining af-
ter modelling the strong lines is due to line-broadening by mi-
croturbulence and damping. Our understanding of the kinetic
equilibrium of Fe I could therefore be considerably improved
by extending the NLTE line formation analysis to lines that are
substantially weaker than those of Paper I. Such lines would not
be detected in metal-poor stars, but they would help to select
the atomic model producing the best fit to the solar spectrum.
Our present investigation is thus extended to a large number
of lines with equivalent widths smaller than ∼ 100mÅ. This
includes lines of all degrees of excitation, although recently
identified Rydberg transitions in the infrared with excitation
energies well above 7 eV (Johansson et al. 1994, Schoenfeld et
al. 1999) were excluded because no f -values are available. The
following section gives a short representation of the assump-
tions concerning both atomic and atmospheric models. Section
3 introduces the sample of Fe I lines with results of NLTE line
formation and profile synthesis. The last section presents our

conclusions and a comparison with those of Paper I. We note
in advance that the present analysis is still not able to produce
a unique atomic model that can be applied to all kinds of stars.
Such an investigation is left to a forthcoming paper, in which
we will extend the analysis to a number of (mostly metal-poor)
reference stars.

2. Model assumptions

2.1. Atomic models

Basic atomic models are the same as those of Paper I. Because
they are described there at considerable length we will not re-
peat the details here. The main differences between them are
characterized by

– the strength of the neutral hydrogen collisions, represented
by a collision enhancement factor, SH, which is 0 in the
case of no hydrogen collisions. All other cases describe
the factor with which the collision formula proposed by
Drawin (1968, 1969; see also Steenbock & Holweger 1984)
is multiplied. We note that SH → ∞ leads to LTE. Our
final choice resulted in SH = 5, a value that is signifi-
cantly greater than found previously for other atoms such
as Al (Baumüller & Gehren 1996, 1997) or Mg (Zhao et
al. 1998). Note that the role of hydrogen collisions is more
important for Fe I than it is for Al I or Mg I, because pho-
toionization of Fe I levels is substantially stronger than that
of the other atoms for levels of all excitation energies; the
large value of SH is therefore to be considered as a com-
pensation for the large photoionization cross-sections cal-
culated by Bautista (1997).

– the treatment of the highly excited levels of Fe I. Due to
the strong photoionization from virtually all Fe I levels the
collisional coupling between levels above a certain limit
Emin of excitation energy and between these levels and the
Fe II parent terms is of critical quality. Electron collisions
are treated by the van Regemorter (1962) approximation in
case of allowed bb collisions, by that of Allen (1973) for
forbidden bb collisions, and according to Seaton’s (1962)
recipe for bf collisions. As is obvious already from the year
of appearance of these references collisions are the ”weak
point” of our considerations. At optical depths of the solar
atmosphere from where most of the Fe I lines emerge, the
resulting interaction by electron collisions is too weak to
produce a tight coupling of the higher terms to the contin-
uum. As a consequence, hydrogen collisions tend to result
in a relative thermalization of only the lower Fe I terms (see
Paper I, Figs. 6b and 6h). Thus even with strong hydrogen
collisions (SH > 1) only the source functions are thermal-
ized but not the level populations or line opacities. Such a
situation always leads to uncomfortably strong NLTE ef-
fects in the solar spectrum. We have therefore forced ther-
malization with respect to Fe II of all terms above Emin,
where different models specified Emin = 6.7, 7.0, and 7.3
eV, respectively. In Paper I we decided to use Emin = 7.3
eV for the final model, because that choice guaranteed that
none of the lines and levels investigated in the solar spec-
trum was directly affected.
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Fig. 1. Photospheric solar temperature distributions of the HM em-
pirical model (dashes) and the TH line-blanketed model (continuous
curve)

2.2. Atmospheric models

The two plane-parallel horizontally homogeneous atmospheric
models used in our analysis are the semi-empirical solar model
of Holweger & Müller (HM, 1974) and our line-blanketed so-
lar model (TH, see Paper I). Their most important difference
with respect to line formation is the temperature stratification,
with THM(τ)−TTH(τ) ∼ 150 K at optical depths between 0.1
and 1.0. The two stratifications are displayed in Fig. 1, and the
most important result of the temperature difference is that typ-
ically the stronger lines are calculated with weaker line wings
in the empirical solar model. Therefore a proper fit of Fe I line
profiles using the HM empirical model always requires slightly
higher damping parameters than for the TH model.

Other important parameters of the models are those de-
termining non-thermal spectral line core broadening. In Paper
I we have chosen ξ = 1.00 (HM) and 0.85 km s−1 (TH),
Ξrt = 2.5 (HM) and 3.2 km s−1 (TH), respectively. There is
clear evidence that both micro- and macroturbulence vary with
depth of line formation, however, only Ξrt was allowed to vary
between ∼ 2.0 km s−1 for some of the most saturated Doppler
profiles and ∼ 4.0 km s−1 for very weak lines. For a more re-
alistic analysis of both weak and strong lines in this paper we
have added a second value of ξ = 1.00 km s−1 for the TH
model and recalculated the non-LTE populations and line pro-
files. No such alternative was examined for the HM model al-
though this would probably reduce the solar Fe I abundances
by similar amounts as for the TH model.

The empirical HM model is used here only as a compari-
son for abundance discussions. It had been established as a ref-
erence for LTE conditions in the solar photosphere, and there-
fore we have not attempted to calculate non-LTE populations
for its temperature distribution. All the other level populations
in this paper thus refer to the TH model for which we distin-
guish between the (sets of) model assumptions given in Table
1. Here, SH and Emin refer to the model atom interaction de-
scribed in section 2.1, whereas ∆log C6 in the last two entries
specifies a decrease of the damping constants with respect to
the Anstee & O’Mara standard. This type of model leads to a

Table 1. TH models used in the present calculations

Type ξ SH Emin ∆ log C6 Name

0 LTE 0.85 LTE(0.85)
1 NLTE 0.85 0.0 7.3 0+(0.85)
2 NLTE 0.85 5.0 7.3 5+(0.85)
3 NLTE 0.85 5.0 5-(0.85)
5 LTE 1.00 LTE(1.00)
6 NLTE 1.00 5.0 7.3 5+(1.00)
7 NLTE 1.00 1.0 7.3 1+(1.00)
8 NLTE 1.00 1.0 7.3 −0.4 1+(1.00)
9 NLTE 1.00 0.5 7.3 −0.4 0.5+(1.00)

substantially improved fit of turbulence lines and those broad-
ened by van der Waals damping (see below). Note that for each
model both NLTE populations and line profiles have been re-
calculated. When deriving solar Fe I abundances in section 3,
some of these models are used to interpolate between different
damping parameters (model 7 and 8).

3. The solar weak line spectrum

Iron is the element with probably the greatest number of lines
visible in the solar spectrum. This is the combined result of
a relatively high element abundance and of a very complex
atomic configuration. In particular for Fe I nearly 10 000 lines
have been identified in the laboratory (Nave et al. 1994), and
possibly hundreds of thousands more are too weak to be de-
tected. However, for only a small subset of these lines accurate
f -values are known; most of them are laboratory data while
only a subset has been derived from the solar spectrum itself.
Our ability to identify the lines with laboratory f -values in
the solar spectrum and calculate their solar Fe I abundances is
therefore strongly influenced by the accuracy of the data, and it
is this dependence that makes an analysis of the complete solar
iron spectrum next to impossible as we will demonstrate below.

The term ”weak line” refers to all line strengths that had
not been considered in Paper I, and it does not necessarily indi-
cate a particularly small line strength. Thus, all lines in the list
of Nave et al. have been examined if an f -value was available.
Among them were only ∼ 500 lines with equivalent widths be-
low 100 mÅ that were not too strongly blended by other lines.
Some of the lines retained in our sample are still blended but
are either well-resolved or at least permit the analysis of one
line wing. From this list we had to exclude lines in spectral re-
gions that in the solar spectrum were overly affected by weak
line haze and continuum uncertainties. These lie in the blue-
green (4400 . . . 4800 Å) and in the yellow (5500 . . . 5900 Å).
The source of these spectral impurities is unknown although
part of the blue could well be contaminated by a complicated
pattern of Fe I autoionization transitions. Bautista’s (1997) cal-
culations show that they are there, but the accuracy of their
wavelength positions is probably not very high. The total num-
ber of Fe I lines including weak and strong lines was therefore
reduced to 410, and during subsequent NLTE analyses their
number once again shrank to the final value of 391 lines.
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Table 2. Fe I lines in the solar flux spectrum including lines of Paper I, which have been recalculated with current model settings and f -values
eliminating some errors in the previous data set. Sources of f -values and remarks are noted at the end of the table. NLTE models are described
in the text. Equivalent widths are in mÅ

Mult Transition λ [Å] E [eV] log gf log C6 log ε(Fe I)� (0.85) log ε(Fe I)� (1.00) Rem Wλ
LTE 0+ 5+ 5- HM LTE 5+ 1+ 1+ 0.5+

-0.4 -0.4

1 a5D0 – z7Do
1 5250.216 0.121 −4.94 e −32.051 7.57 7.71 7.61 7.74 7.66 7.49 7.53 7.55 7.56 7.59 acf 71.2

1 a5D1 – z7Do
1 5225.533 0.110 −4.79 e −32.052 7.60 7.73 7.64 7.77 7.69 7.51 7.55 7.57 7.59 7.60 af 76.1

1 a5D2 – z7Do
3 5247.057 0.087 −4.95 e −32.057 7.56 7.72 7.59 7.75 7.65 7.48 7.53 7.55 7.57 7.58 af 68.7

1 a5D4 – z7Do
5 5166.282 0.000 −4.20 e −32.070 7.51 7.66 7.64 7.71 7.69 7.42 7.51 7.51 7.52 7.53 cdfh 109.0

2 a5D2 – z7Fo
2 4445.480 0.087 −5.44 e −31.996 7.54 7.65 7.54 7.66 7.65 7.50 7.52 7.53 7.54 7.55 a 43.3

2 a5D3 – z7Fo
4 4427.309 0.052 −2.92 a −32.000 7.58 7.66 7.58 7.65 7.73 7.54 7.56 7.56 7.69 7.70 dei 199.1

2 a5D4 – z7Fo
4 4347.237 0.000 −5.50 e −32.006 7.54 7.65 7.55 7.66 7.66 7.49 7.51 7.53 7.53 7.54 ac 43.6

3 a5D1 – z7Po
2 4232.720 0.110 −4.93 e −31.968 7.47 7.57 7.49 7.59 7.59 7.40 7.44 7.45 7.46 7.47 ac 60.2

13 a5F1 – z7Fo
1 6625.026 1.011 −5.35 m −31.927 7.52 7.64 7.53 7.65 7.63 7.51 7.53 7.54 7.54 7.55 ag 16.4

13 a5F2 – z7Fo
2 6574.233 0.990 −5.02 a −32.400 7.56 7.69 7.57 7.69 7.68 7.54 7.56 7.58 7.58 7.60 a 29.7

13 a5F3 – z7Fo
3 6498.945 0.958 −4.70 f −31.934 7.58 7.70 7.59 7.73 7.67 7.54 7.56 7.58 7.59 7.61 ag 48.1

13 a5F4 – z7Fo
4 6400.323 0.915 −4.32 a −31.939 7.49 7.60 7.51 7.63 7.56 7.44 7.45 7.48 7.49 7.51 bf 65.5

13 a5F5 – z7Fo
5 6280.620 0.859 −4.39 f −31.947 7.55 7.71 7.60 7.75 7.66 7.52 7.52 7.52 7.53 7.53 dc 68.4

14 a5F4 – z7Po
4 6120.250 0.915 −5.95 m −31.926 7.53 7.64 7.54 7.65 7.69 7.53 7.53 7.53 7.53 7.53 gc 5.6

15 a5F2 – z5Do
1 5405.775 0.990 −1.88 p −31.870 7.50 7.52 7.51 7.60 7.64 7.47 7.49 7.50 7.64 7.64 e 271.5

15 a5F3 – z5Do
2 5371.489 0.958 −1.65 n −31.870 7.41 7.44 7.43 7.52 7.57 7.40 7.40 7.40 7.53 7.53 e 306.3

15 a5F4 – z5Do
3 5328.038 0.915 −1.47 n −31.880 7.46 7.52 7.47 7.56 7.62 7.44 7.46 7.47 7.61 7.61 e 397.9

15 a5F4 – z5Do
4 5397.128 0.915 −1.99 n −31.880 7.47 7.51 7.48 7.56 7.64 7.46 7.46 7.47 7.63 7.63 i 241.7

15 a5F5 – z5Do
4 5269.537 0.859 −1.32 n −31.890 7.44 7.51 7.44 7.54 7.61 7.43 7.45 7.45 7.61 7.61 e 501.5

34 a3F2 – z5Fo
2 6851.640 1.608 −5.32 b −31.786 7.46 7.58 7.47 7.58 7.60 7.46 7.47 7.49 7.49 7.50 acf 3.9

34 a3F3 – z5Fo
3 6739.540 1.557 −4.79 p −31.795 7.37 7.49 7.38 7.52 7.48 7.37 7.38 7.40 7.40 7.41 acf 12.3

34 a3F4 – z5Fo
4 6581.220 1.485 −4.68 p −31.806 7.42 7.54 7.43 7.55 7.54 7.41 7.42 7.44 7.44 7.45 ac 20.5

34 a3F4 – z5Fo
5 6710.310 1.485 −4.88 m −31.813 7.54 7.65 7.55 7.66 7.64 7.53 7.54 7.55 7.55 7.56 acf 16.2

36 a3F2 – z3Fo
2 5216.274 1.608 −2.15 o −31.670 7.45 7.45 7.48 7.59 7.53 7.35 7.39 7.41 7.51 7.51 defh 130.3

36 a3F3 – z3Fo
3 5194.941 1.557 −2.09 o −31.680 7.45 7.46 7.45 7.55 7.55 7.36 7.38 7.39 7.50 7.50 eh 129.6

38 a3F2 – y5Do
2 4798.734 1.608 −4.25 b −31.612 7.59 7.70 7.60 7.71 7.71 7.58 7.59 7.60 7.60 7.61 gh 34.3

38 a3F3 – y5Do
3 4772.820 1.557 −2.90 a −31.627 7.68 7.81 7.72 7.86 7.81 7.61 7.65 7.66 7.72 7.73 dg 93.7

41 a3F3 – z5Go
4 4404.750 1.557 −0.10 p −31.560 7.40 7.48 7.41 7.50 7.57 7.39 7.41 7.41 7.54 7.55 h 786.0

41 a3F4 – z5Go
5 4383.545 1.485 0.20 o −31.580 7.39 7.49 7.42 7.48 7.58 7.39 7.41 7.41 7.55 7.56 h 1345.6

42 a3F4 – z3Go
3 4147.669 1.485 −2.10 o −31.520 7.47 7.51 7.48 7.58 7.58 7.41 7.41 7.41 7.51 7.51 ch 131.2

42 a3F4 – z3Go
5 4271.760 1.485 −0.16 o −31.550 7.37 7.44 7.38 7.46 7.55 7.36 7.36 7.36 7.51 7.51 h 846.7

43 a3F2 – y3Fo
2 4071.738 1.608 −0.02 o −31.440 7.33 7.41 7.33 7.41 7.51 7.31 7.31 7.31 7.47 7.47 h 860.9

43 a3F3 – y3Fo
3 4063.594 1.557 0.06 a −31.470 7.31 7.45 7.35 7.46 7.55 7.35 7.35 7.36 7.50 7.50 hj 900.8

43 a3F4 – y3Fo
4 4045.812 1.485 0.28 o −31.490 7.36 7.43 7.38 7.46 7.55 7.36 7.36 7.36 7.51 7.51 hj 1250.5

62 a5P1 – y5Do
2 6297.800 2.223 −2.73 q −31.565 7.57 7.67 7.58 7.71 7.64 7.48 7.50 7.52 7.53 7.55 h 75.3

62 a5P3 – y5Do
2 6151.620 2.176 −3.27 q −31.569 7.51 7.62 7.51 7.61 7.55 7.45 7.46 7.47 7.48 7.50 h 51.3

63 a5P1 – y5Fo
2 6015.250 2.223 −4.68 m −31.539 7.52 7.62 7.53 7.63 7.65 7.52 7.53 7.55 7.54 7.55 ac 4.5

64 a5P1 – z3Po
1 6082.720 2.223 −3.59 p −31.545 7.53 7.63 7.54 7.65 7.61 7.51 7.52 7.53 7.54 7.55 g 35.8

64 a5P1 – z3Po
2 6240.660 2.223 −3.23 p −31.560 7.48 7.57 7.49 7.61 7.55 7.43 7.44 7.45 7.47 7.48 g 50.3

66 a5P1 – y5Po
2 5198.711 2.223 −2.14 g −31.440 7.58 7.65 7.60 7.70 7.63 7.51 7.53 7.54 7.56 7.57 dfk 103.9

66 a5P2 – y5Po
1 5079.223 2.198 −2.07 g −31.430 7.55 7.64 7.59 7.68 7.67 7.50 7.52 7.53 7.57 7.59 bfk 107.5

66 a5P2 – y5Po
2 5145.099 2.198 −2.88 a −31.439 7.26 7.36 7.27 7.38 7.34 7.22 7.24 7.25 7.27 7.28 d 54.3

66 a5P2 – y5Po
3 5250.646 2.198 −2.18 a −31.460 7.69 7.75 7.72 7.82 7.76 7.59 7.62 7.65 7.72 7.73 eh 108.1

68 a5P1 – x5Do
1 4447.717 2.176 −1.34 g −31.270 7.61 7.70 7.64 7.73 7.79 7.58 7.61 7.63 7.74 7.76 d 185.4

68 a5P2 – x5Do
3 4494.563 2.198 −1.14 g −31.300 7.48 7.53 7.50 7.59 7.61 7.45 7.47 7.48 7.60 7.60 df 206.8

69 a5P2 – y7Po
3 4447.130 2.198 −2.73 a −31.280 7.63 7.72 7.64 7.74 7.68 7.55 7.57 7.59 7.61 7.63 d 66.4

69 a5P3 – y7Po
2 4442.840 2.176 −2.79 g −31.290 7.55 7.64 7.55 7.64 7.64 7.51 7.51 7.51 7.53 7.54 bl 64.5

71 a5P3 – z5So
2 4282.402 2.176 −0.78 a −31.240 7.17 7.23 7.18 7.26 7.33 7.15 7.15 7.15 7.28 7.29 bl 193.8

109 a3P2 – y5Do
1 6392.543 2.279 −4.03 m −31.553 7.57 7.68 7.58 7.69 7.66 7.56 7.57 7.58 7.58 7.59 g 19.0

109 a3P2 – y5Do
3 6608.030 2.279 −4.03 b −31.570 7.56 7.66 7.56 7.67 7.65 7.55 7.56 7.57 7.57 7.58 g 18.0

111 a3P0 – z3Po
1 6978.850 2.484 −2.48 p −31.523 7.59 7.64 7.63 7.73 7.62 7.53 7.54 7.57 7.61 7.62 af 78.1

111 a3P1 – z3Po
0 6663.450 2.424 −2.45 p −31.521 7.54 7.60 7.58 7.70 7.58 7.48 7.50 7.52 7.56 7.57 afh 80.8

111 a3P1 – z3Po
1 6750.150 2.424 −2.61 p −31.528 7.60 7.67 7.63 7.73 7.63 7.53 7.54 7.56 7.60 7.61 af 76.7

111 a3P2 – z3Po
2 6421.350 2.279 −1.95 p −31.560 7.45 7.48 7.49 7.60 7.52 7.38 7.43 7.44 7.52 7.52 bfh 110.0

113 a3P1 – y5Po
2 5678.600 2.424 −4.67 m −31.426 7.51 7.61 7.51 7.61 7.65 7.51 7.52 7.53 7.53 7.54 cd 3.2

113 a3P2 – y5Po
3 5436.590 2.279 −2.96 a −31.451 7.19 7.29 7.20 7.31 7.27 7.16 7.17 7.18 7.19 7.20 b 45.6

114 a3P1 – y3Do
1 5141.739 2.424 −1.96 p −31.350 7.37 7.42 7.38 7.49 7.41 7.36 7.29 7.30 7.36 7.37 dh 88.1

114 a3P2 – y3Do
2 4924.769 2.279 −2.24 q −31.370 7.71 7.74 7.73 7.83 7.78 7.64 7.64 7.65 7.70 7.72 df 97.6

114 a3P2 – y3Do
3 5049.819 2.279 −1.33 q −31.390 7.51 7.53 7.52 7.62 7.65 7.46 7.48 7.49 7.60 7.62 df 164.9

115 a3P2 – x5Do
2 4574.720 2.279 −2.97 b −31.278 7.65 7.77 7.68 7.78 7.73 7.60 7.61 7.62 7.65 7.67 a 59.8

116 a3P2 – z5So
2 4439.880 2.279 −3.00 g −31.237 7.52 7.62 7.53 7.63 7.61 7.48 7.49 7.50 7.51 7.52 a 52.9

152 z7Do
1 – e7D2 4233.602 2.482 −0.60 g −30.640 7.41 7.46 7.39 7.46 7.55 7.37 7.37 7.37 7.51 7.51 ef 278.4

152 z7Do
2 – e7D3 4250.119 2.469 −0.41 g −30.660 7.45 7.53 7.46 7.54 7.63 7.44 7.46 7.46 7.61 7.62 ade 355.4

152 z7Do
3 – e7D2 4187.039 2.449 −0.55 g −30.640 7.39 7.47 7.40 7.49 7.55 7.38 7.39 7.41 7.54 7.54 ade 297.2

152 z7Do
3 – e7D3 4222.213 2.449 −0.97 g −30.650 7.41 7.51 7.44 7.53 7.56 7.41 7.42 7.42 7.56 7.56 ade 198.5

152 z7Do
5 – e7D5 4260.474 2.399 0.14 q −30.690 7.31 7.42 7.32 7.44 7.53 7.31 7.32 7.32 7.47 7.48 bdef 620.4

168 a3H4 – z5Go
5 6667.420 2.453 −4.40 m −31.511 7.57 7.68 7.59 7.69 7.69 7.58 7.59 7.60 7.60 7.61 acl 5.7

168 a3H5 – z5Go
4 6393.601 2.433 −1.43 p −31.500 7.41 7.49 7.44 7.54 7.52 7.38 7.42 7.42 7.44 7.44 a 142.6

168 a3H5 – z5Go
5 6593.870 2.433 −2.42 g −31.510 7.62 7.70 7.64 7.75 7.67 7.57 7.58 7.60 7.64 7.66 ac 93.1

168 a3H6 – z5Go
5 6494.980 2.404 −1.27 g −31.520 7.49 7.56 7.52 7.63 7.62 7.46 7.50 7.51 7.63 7.63 ai 179.5

169 a3H4 – z3Go
3 6136.615 2.453 −1.40 g −31.470 7.50 7.56 7.52 7.61 7.62 7.45 7.49 7.52 7.61 7.61 ai 149.2

169 a3H5 – z3Go
4 6191.558 2.433 −1.42 a −31.480 7.44 7.50 7.47 7.57 7.59 7.42 7.45 7.45 7.56 7.56 ai 142.5

169 a3H6 – z3Go
5 6252.555 2.404 −1.69 g −31.490 7.55 7.62 7.57 7.69 7.66 7.49 7.52 7.54 7.64 7.64 a 129.3

170 a3H4 – y3Fo
4 5916.250 2.453 −2.99 g −31.443 7.62 7.73 7.64 7.75 7.69 7.59 7.59 7.61 7.63 7.65 a 54.5

205 b3F2 – z5Go
2 6746.960 2.608 −4.35 m −31.461 7.51 7.62 7.52 7.63 7.64 7.52 7.52 7.53 7.53 7.54 ace 4.6

205 b3F4 – z5Go
4 6839.830 2.559 −3.45 b −31.486 7.58 7.69 7.59 7.70 7.66 7.57 7.58 7.59 7.60 7.61 a 30.6

206 b3F2 – z3Go
3 6646.980 2.608 −3.99 m −31.453 7.52 7.62 7.53 7.63 7.63 7.52 7.53 7.54 7.54 7.56 cd 10.2
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Table 2 (continued)

Mult Transition λ [Å] E [eV] log gf log C6 log ε(Fe I)� (0.85) log ε(Fe I)� (1.00) Rem Wλ
LTE 0+ 5+ 5- HM LTE 5+ 1+ 1+ 0.5+

-0.4 -0.4

206 b3F3 – z3Go
3 6575.024 2.588 −2.71 a −31.455 7.62 7.73 7.65 7.77 7.70 7.57 7.58 7.60 7.61 7.63 d 65.3

206 b3F4 – z3Go
4 6609.119 2.559 −2.69 h −31.468 7.61 7.71 7.63 7.75 7.66 7.56 7.58 7.59 7.59 7.61 a 68.9

207 b3F2 – y3Fo
2 6065.482 2.608 −1.53 h −31.400 7.54 7.60 7.59 7.69 7.65 7.51 7.54 7.56 7.64 7.65 af 126.1

207 b3F2 – y3Fo
3 6200.320 2.608 −2.44 h −31.415 7.61 7.73 7.64 7.75 7.67 7.55 7.56 7.58 7.63 7.64 ag 73.4

207 b3F3 – y3Fo
3 6137.691 2.588 −1.40 h −31.420 7.56 7.60 7.61 7.71 7.68 7.53 7.54 7.56 7.67 7.68 a 144.1

207 b3F3 – y3Fo
4 6322.694 2.588 −2.43 h −31.434 7.64 7.74 7.67 7.79 7.69 7.58 7.60 7.62 7.67 7.68 af 78.1

207 b3F4 – y3Fo
4 6230.723 2.559 −1.28 h −31.440 7.62 7.65 7.65 7.75 7.72 7.59 7.61 7.63 7.71 7.72 dg 167.6

209 b3F3 – y3Do
3 5778.470 2.588 −3.43 q −31.379 7.43 7.53 7.44 7.54 7.52 7.43 7.43 7.44 7.44 7.45 ac 23.3

268 a3G3 – y3Fo
2 6546.239 2.758 −1.54 a −31.390 7.46 7.49 7.47 7.58 7.51 7.39 7.40 7.43 7.49 7.51 aefh 110.9

268 a3G3 – y3Fo
3 6703.570 2.758 −3.16 b −31.401 7.65 7.75 7.66 7.76 7.71 7.63 7.64 7.65 7.65 7.66 a 37.2

268 a3G4 – y3Fo
3 6592.913 2.727 −1.47 a −31.400 7.45 7.48 7.50 7.60 7.53 7.39 7.41 7.44 7.51 7.53 ahk 126.2

268 a3G4 – y3Fo
4 6806.850 2.727 −3.21 m −31.421 7.59 7.70 7.60 7.71 7.66 7.58 7.59 7.60 7.60 7.61 a 36.3

268 a3G5 – y3Fo
4 6677.987 2.692 −1.42 a −31.420 7.58 7.57 7.61 7.73 7.66 7.52 7.55 7.57 7.69 7.69 afh 140.8

318 z7Fo
2 – e7D2 4890.755 2.875 −0.39 a −30.650 7.44 7.52 7.46 7.54 7.60 7.43 7.45 7.47 7.59 7.60 a 315.9

318 z7Fo
3 – e7D3 4918.994 2.865 −0.34 a −30.660 7.45 7.52 7.46 7.54 7.61 7.43 7.44 7.46 7.60 7.61 b 301.4

318 z7Fo
4 – e7D3 4891.492 2.851 −0.11 a −30.660 7.41 7.49 7.42 7.50 7.57 7.39 7.42 7.42 7.56 7.57 b 387.6

318 z7Fo
4 – e7D4 4957.298 2.851 −0.41 a −30.690 7.46 7.56 7.48 7.55 7.61 7.45 7.47 7.47 7.68 7.70 b 302.0

318 z7Fo
5 – e7D4 4920.503 2.832 0.07 a −30.680 7.48 7.56 7.49 7.57 7.63 7.48 7.48 7.49 7.64 7.65 c 484.3

318 z7Fo
6 – e7D5 4957.596 2.808 0.23 q −30.700 7.43 7.51 7.43 7.52 7.58 7.41 7.43 7.44 7.61 7.61 d 563.1

319 z7Fo
1 – e5D2 4525.870 2.882 −3.20 b −30.522 7.54 7.65 7.56 7.65 7.65 7.54 7.54 7.56 7.56 7.57 dc 21.0

319 z7Fo
2 – e5D3 4571.440 2.875 −3.27 b −30.547 7.56 7.66 7.57 7.66 7.68 7.56 7.56 7.57 7.57 7.58 dl 18.7

342 b3P0 – y3Do
1 6270.240 2.858 −2.46 p −31.321 7.41 7.50 7.42 7.53 7.47 7.37 7.38 7.39 7.42 7.43 afh 54.1

342 b3P1 – y3Do
1 6229.230 2.845 −2.81 p −31.322 7.39 7.50 7.40 7.50 7.45 7.37 7.38 7.40 7.41 7.43 a 39.5

342 b3P2 – y3Do
2 6311.510 2.831 −3.14 q −31.337 7.51 7.62 7.52 7.63 7.59 7.50 7.51 7.52 7.53 7.54 ac 27.1

342 b3P2 – y3Do
3 6518.373 2.831 −2.45 q −31.356 7.45 7.54 7.46 7.57 7.50 7.40 7.41 7.43 7.45 7.46 ac 55.2

346 b3P1 – w5Do
1 4657.600 2.845 −2.90 b −30.984 7.51 7.61 7.52 7.62 7.59 7.49 7.50 7.51 7.51 7.52 af 33.2

351 b3P2 – w5Po
1 4241.110 2.831 −2.51 b −30.821 7.49 7.57 7.51 7.61 7.59 7.47 7.48 7.49 7.49 7.50 a 48.0

383 z7Po
2 – e7D1 5191.455 3.038 −0.55 a −30.650 7.43 7.51 7.44 7.54 7.58 7.39 7.41 7.42 7.54 7.55 fhk 206.4

383 z7Po
2 – e7D3 5281.790 3.038 −0.83 a −30.670 7.42 7.51 7.43 7.53 7.55 7.37 7.39 7.40 7.52 7.53 hk 158.6

383 z7Po
3 – e7D2 5139.251 2.998 −0.74 a −30.650 7.44 7.51 7.43 7.52 7.57 7.43 7.43 7.45 7.59 7.60 b 179.7

383 z7Po
3 – e7D4 5266.555 2.998 −0.39 a −30.680 7.46 7.53 7.47 7.55 7.57 7.43 7.45 7.46 7.60 7.61 de 258.5

383 z7Po
4 – e7D3 5068.765 2.940 −1.04 a −30.670 7.41 7.50 7.41 7.51 7.54 7.37 7.39 7.40 7.51 7.52 be 143.5

383 z7Po
4 – e7D4 5139.462 2.940 −0.51 a −30.680 7.44 7.51 7.43 7.52 7.59 7.39 7.43 7.44 7.59 7.59 b 221.5

383 z7Po
4 – e7D5 5232.940 2.940 −0.10 q −30.710 7.45 7.51 7.44 7.57 7.60 7.43 7.43 7.45 7.59 7.60 be 369.3

384 z7Po
2 – e5D2 4800.133 3.038 −2.74 b −30.524 7.08 7.18 7.09 7.18 7.19 7.08 7.08 7.09 7.09 7.10 d 16.4

384 z7Po
3 – e5D2 4726.139 2.998 −3.25 b −30.523 7.61 7.71 7.62 7.71 7.72 7.61 7.61 7.62 7.62 7.63 a 17.0

384 z7Po
3 – e5D3 4787.830 2.998 −2.53 p −30.550 7.43 7.52 7.42 7.52 7.51 7.39 7.40 7.42 7.42 7.43 a 42.8

414 b3G4 – z3Ho
4 4348.941 2.990 −2.14 a −30.758 7.43 7.49 7.42 7.53 7.54 7.37 7.38 7.39 7.42 7.43 ag 58.8

415 b3G4 – w3Do
3 4365.900 2.990 −2.25 a −30.766 7.49 7.57 7.50 7.60 7.58 7.44 7.45 7.46 7.48 7.49 a 54.1

464 c3P1 – x5Po
1 5460.910 3.071 −3.58 m −31.070 7.51 7.61 7.52 7.62 7.64 7.52 7.52 7.53 7.53 7.54 agl 9.1

467 c3P1 – x3Do
2 4874.357 3.071 −3.03 m −30.911 7.59 7.69 7.60 7.70 7.73 7.59 7.59 7.60 7.60 7.61 a 24.6

515 a1G4 – x3Fo
3 4439.640 3.047 −2.84 b −30.758 7.34 7.43 7.35 7.44 7.45 7.33 7.34 7.35 7.35 7.36 a 21.9

552 z5Do
0 – e7D1 5807.790 3.292 −3.41 m −30.650 7.58 7.69 7.59 7.69 7.69 7.59 7.59 7.60 7.60 7.61 ac 7.9

553 z5Do
1 – e5D1 5253.469 3.283 −1.57 q −31.164 7.50 7.58 7.50 7.60 7.57 7.44 7.45 7.46 7.51 7.52 ahk 77.5

553 z5Do
2 – e5D3 5339.929 3.266 −0.65 p −30.560 7.52 7.54 7.51 7.61 7.61 7.45 7.46 7.48 7.60 7.61 hk 177.1

553 z5Do
3 – e5D4 5393.167 3.241 −0.71 p −30.600 7.50 7.55 7.52 7.59 7.59 7.45 7.45 7.47 7.60 7.62 hk 161.0

553 z5Do
4 – e5D3 5217.389 3.211 −1.07 p −30.560 7.50 7.54 7.52 7.62 7.60 7.44 7.46 7.48 7.59 7.60 hk 125.0

553 z5Do
4 – e5D4 5324.179 3.211 −0.10 p −30.600 7.49 7.53 7.50 7.59 7.63 7.46 7.48 7.50 7.64 7.65 de 322.4

554 z5Do
4 – e5F3 4574.240 3.211 −2.50 b −30.256 7.64 7.72 7.65 7.74 7.71 7.62 7.62 7.63 7.64 7.65 a 41.7

588 b3H5 – z3Ho
5 4839.549 3.267 −1.82 a −31.800 7.55 7.60 7.55 7.65 7.63 7.48 7.49 7.51 7.55 7.56 af 62.6

594 b3H5 – z1Ho
5 4537.680 3.267 −2.88 b −30.639 7.47 7.55 7.47 7.56 7.57 7.46 7.47 7.48 7.48 7.49 a 18.0

628 a3D3 – x3Do
3 5262.885 3.251 −2.66 b −30.912 7.24 7.34 7.25 7.35 7.34 7.24 7.25 7.26 7.26 7.27 ac 18.7

632 a3D3 – x3Fo
3 4790.750 3.251 −3.24 b −30.754 7.48 7.58 7.49 7.58 7.61 7.49 7.49 7.50 7.50 7.51 a 8.7

633 a3D3 – w3Do
3 4808.150 3.251 −2.79 b −30.761 7.64 7.73 7.65 7.74 7.74 7.63 7.63 7.65 7.65 7.66 a 28.9

638 a3D3 – v5Po
2 4556.940 3.251 −2.71 b −30.659 7.53 7.63 7.54 7.64 7.63 7.52 7.53 7.54 7.54 7.55 acf 28.0

641 a3D2 – x3Po
1 4566.520 3.301 −2.38 a −30.626 7.69 7.78 7.70 7.79 7.78 7.66 7.66 7.68 7.68 7.69 a 48.6

641 a3D3 – x3Po
2 4527.783 3.251 −2.74 b −30.646 7.71 7.79 7.70 7.80 7.80 7.69 7.69 7.70 7.70 7.71 acdf 30.5

686 z5Fo
2 – e5D1 5569.618 3.417 −0.49 q −30.510 7.46 7.52 7.49 7.59 7.59 7.44 7.47 7.49 7.60 7.62 afh 175.7

686 z5Fo
2 – e5D2 5624.542 3.417 −0.75 p −30.530 7.59 7.63 7.60 7.70 7.66 7.54 7.56 7.58 7.70 7.71 ah 150.6

686 z5Fo
2 – e5D3 5712.150 3.417 −1.99 p −30.555 7.51 7.61 7.51 7.61 7.57 7.46 7.47 7.48 7.50 7.51 ah 52.0

686 z5Fo
3 – e5D2 5572.842 3.396 −0.28 p −30.530 7.48 7.52 7.50 7.61 7.62 7.45 7.49 7.50 7.62 7.63 bh 224.7

686 z5Fo
3 – e5D4 5784.690 3.396 −2.53 p −30.593 7.44 7.55 7.44 7.54 7.54 7.43 7.44 7.45 7.45 7.46 ac 27.6

686 z5Fo
4 – e5D3 5586.755 3.368 −0.10 p −30.560 7.50 7.52 7.51 7.60 7.62 7.47 7.48 7.50 7.63 7.64 b 269.9

686 z5Fo
5 – e5D4 5615.643 3.332 0.05 p −30.590 7.45 7.50 7.49 7.57 7.60 7.44 7.44 7.47 7.59 7.60 b 294.2

687 z5Fo
1 – e5F2 4907.736 3.430 −1.84 j −30.262 7.61 7.68 7.62 7.72 7.68 7.56 7.57 7.58 7.61 7.62 af 62.9

687 z5Fo
5 – e5F4 4875.882 3.332 −2.02 b −30.290 7.67 7.75 7.68 7.78 7.78 7.63 7.64 7.65 7.68 7.69 ac 63.4

690 z5Fo
4 – f7D4 4228.710 3.368 −2.54 m −30.626 7.49 7.58 7.49 7.58 7.58 7.48 7.48 7.49 7.49 7.50 a 25.4

720 a1P1 – x3Po
0 4779.442 3.415 −2.02 a −30.627 7.35 7.44 7.35 7.45 7.43 7.31 7.32 7.33 7.35 7.36 ac 44.2

780 a1H5 – y3Go
4 6019.360 3.573 −3.36 m −30.882 7.59 7.68 7.61 7.69 7.72 7.60 7.60 7.61 7.61 7.62 al 5.8

782 a1H5 – u5Do
4 5584.770 3.573 −2.32 b −30.777 7.58 7.67 7.59 7.68 7.67 7.56 7.57 7.58 7.58 7.59 acel 36.8

784 a1H5 – z3Ho
4 5466.987 3.573 −2.23 a −30.744 7.51 7.59 7.51 7.61 7.58 7.49 7.49 7.50 7.51 7.52 b 34.3

793 a1H5 – y3Ho
5 4809.940 3.573 −2.72 b −30.508 7.64 7.73 7.64 7.73 7.74 7.63 7.64 7.65 7.65 7.66 a 20.6

797 a1H5 – u3Go
5 4432.570 3.573 −1.60 b −30.313 7.38 7.45 7.37 7.47 7.45 7.34 7.34 7.35 7.37 7.38 a 53.6

816 z5Po
1 – e5D0 6302.493 3.686 −0.91 c −30.510 7.26 7.33 7.28 7.38 7.32 7.21 7.22 7.23 7.30 7.31 ah 92.1

816 z5Po
2 – e5D1 6232.641 3.654 −1.22 q −30.520 7.51 7.61 7.52 7.62 7.58 7.47 7.48 7.49 7.54 7.55 88.7

816 z5Po
2 – e5D3 6411.649 3.654 −0.60 p −30.560 7.53 7.58 7.55 7.65 7.64 7.49 7.53 7.54 7.64 7.65 ah 147.2

816 z5Po
3 – e5D3 6246.318 3.602 −0.73 p −30.560 7.50 7.53 7.50 7.60 7.56 7.44 7.45 7.47 7.57 7.58 afh 133.2

816 z5Po
3 – e5D4 6400.001 3.602 −0.29 p −30.590 7.48 7.52 7.50 7.60 7.57 7.43 7.44 7.47 7.60 7.61 d 187.0

819 z5Po
2 – e7F1 4598.740 3.654 −2.66 m −30.581 7.58 7.68 7.59 7.68 7.69 7.58 7.58 7.59 7.59 7.60 dc 16.1

825 z5Po
2 – f5F1 4485.970 3.654 −2.35 b −30.491 7.42 7.51 7.42 7.51 7.52 7.41 7.41 7.42 7.42 7.43 ac 19.8

829 z5Po
2 – e7S3 4523.400 3.654 −1.99 b −30.529 7.61 7.70 7.61 7.71 7.70 7.58 7.59 7.60 7.62 7.63 ac 43.9
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Table 2 (continued)

Mult Transition λ [Å] E [eV] log gf log C6 log ε(Fe I)� (0.85) log ε(Fe I)� (1.00) Rem Wλ
LTE 0+ 5+ 5- HM LTE 5+ 1+ 1+ 0.5+

-0.4 -0.4

841 a1I6 – x3Go
5 5397.620 3.634 −2.48 m −32.483 7.57 7.66 7.57 7.66 7.65 7.56 7.56 7.57 7.57 7.58 a 24.3

843 a1I6 – z1Ho
5 5242.491 3.634 −0.97 a −30.630 7.47 7.49 7.45 7.55 7.51 7.41 7.42 7.43 7.51 7.53 ah 96.3

845 a1I6 – v3Go
5 4961.919 3.634 −2.29 b −30.521 7.45 7.54 7.45 7.54 7.54 7.43 7.44 7.45 7.45 7.46 a 27.3

867 b3D2 – y3Po
1 5698.050 3.640 −2.68 b −30.759 7.49 7.59 7.50 7.59 7.59 7.49 7.50 7.51 7.51 7.52 ac 15.0

867 b3D3 – y3Po
2 5760.350 3.642 −2.49 b −30.774 7.54 7.64 7.54 7.64 7.62 7.53 7.54 7.55 7.55 7.56 ac 22.9

868 b3D2 – x3Fo
3 5636.710 3.640 −2.61 b −30.743 7.59 7.68 7.59 7.69 7.68 7.58 7.59 7.60 7.60 7.61 a 20.1

872 b3D3 – z1Go
4 5529.150 3.642 −2.73 b −30.712 7.55 7.64 7.56 7.65 7.63 7.54 7.55 7.56 7.56 7.57 a 14.6

875 b3D2 – v5Fo
2 5294.550 3.640 −2.86 b −30.640 7.69 7.78 7.69 7.78 7.78 7.68 7.69 7.70 7.70 7.71 a 15.2

877 b3D3 – v5Po
2 5320.050 3.642 −2.54 b −30.647 7.52 7.62 7.53 7.63 7.61 7.51 7.52 7.53 7.53 7.54 a 19.8

880 b3D1 – x3Po
0 5223.187 3.635 −1.78 a −30.620 7.03 7.13 7.04 7.13 7.10 7.02 7.02 7.03 7.03 7.04 a 31.4

884 b3D2 – v3Do
3 5054.650 3.640 −1.92 a −30.553 7.40 7.52 7.41 7.50 7.49 7.37 7.38 7.39 7.41 7.42 a 40.9

884 b3D3 – v3Do
3 5058.500 3.642 −2.83 l −30.553 7.58 7.68 7.59 7.67 7.68 7.58 7.58 7.59 7.59 7.60 a 12.9

888 b3D2 – w3Po
2 4799.410 3.640 −2.23 b −30.443 7.64 7.73 7.64 7.74 7.72 7.62 7.62 7.64 7.64 7.65 a 35.4

898 b3D3 – u3Go
4 4483.780 3.642 −2.47 b −30.290 7.42 7.50 7.42 7.51 7.53 7.42 7.42 7.43 7.43 7.44 b 15.5

922 b1G4 – x3Fo
4 5849.670 3.694 −2.99 b −30.759 7.53 7.62 7.53 7.62 7.63 7.53 7.53 7.54 7.54 7.55 ac 8.4

923 b1G4 – w5Go
4 5619.230 3.694 −3.27 m −30.699 7.59 7.68 7.59 7.68 7.71 7.58 7.59 7.60 7.60 7.61 ac 4.9

924 b1G4 – z1Go
4 5662.940 3.694 −1.97 a −30.711 7.68 7.76 7.70 7.80 7.77 7.66 7.67 7.69 7.69 7.71 a 50.0

926 b1G4 – x3Go
4 5549.940 3.694 −2.91 b −30.678 7.61 7.71 7.62 7.71 7.71 7.61 7.61 7.62 7.62 7.63 a 12.0

927 b1G4 – y5Ho
4 5385.580 3.694 −2.97 b −30.627 7.36 7.46 7.37 7.46 7.48 7.37 7.37 7.38 7.38 7.39 a 6.4

928 b1G4 – z1Ho
5 5379.580 3.694 −1.51 a −30.626 7.51 7.58 7.53 7.63 7.57 7.47 7.48 7.50 7.54 7.55 a 64.0

929 b1G4 – y1Go
4 5288.530 3.694 −1.51 a −30.595 7.44 7.51 7.44 7.54 7.49 7.39 7.40 7.42 7.45 7.46 a 59.4

958 z3Fo
4 – e5F4 6220.780 3.881 −2.46 m −30.321 7.62 7.75 7.63 7.73 7.70 7.62 7.63 7.64 7.64 7.65 a 19.1

959 z3Fo
2 – e3F2 5952.750 3.984 −1.44 b −30.182 7.60 7.66 7.61 7.71 7.67 7.56 7.57 7.59 7.61 7.63 bc 60.1

959 z3Fo
2 – e3F3 6096.690 3.984 −1.93 b −30.233 7.64 7.73 7.64 7.74 7.70 7.62 7.63 7.64 7.65 7.66 ag 38.8

959 z3Fo
3 – e3F4 6187.987 3.943 −1.72 b −30.276 7.58 7.67 7.59 7.69 7.65 7.56 7.57 7.58 7.60 7.61 a 50.7

959 z3Fo
4 – e3F3 5804.060 3.881 −2.29 b −30.240 7.60 7.71 7.61 7.71 7.67 7.60 7.60 7.61 7.61 7.62 ac 25.8

959 z3Fo
4 – e3F4 6003.030 3.881 −1.12 k −30.278 7.63 7.65 7.63 7.73 7.68 7.57 7.58 7.60 7.66 7.68 af 85.3

965 z3Fo
3 – e3D2 5014.942 3.943 −0.30 a −29.930 7.34 7.37 7.35 7.44 7.44 7.32 7.33 7.35 7.47 7.46 cdfh 139.0

965 z3Fo
4 – e3D3 5001.863 3.881 0.01 i −29.960 7.21 7.25 7.22 7.31 7.32 7.20 7.19 7.22 7.35 7.36 bhk 165.9

969 z3Fo
2 – g5F1 4492.690 3.984 −1.65 b −30.051 7.49 7.58 7.50 7.59 7.58 7.47 7.47 7.48 7.50 7.51 a 43.7

971 z3Fo
3 – f5P2 4593.540 3.943 −2.06 b −30.175 7.62 7.72 7.63 7.72 7.72 7.62 7.62 7.63 7.63 7.64 a 30.8

972 z3Fo
3 – f5G4 4551.654 3.943 −2.06 b −30.145 7.62 7.71 7.63 7.71 7.72 7.61 7.61 7.62 7.62 7.63 a 30.7

981 z3Do
3 – e5F4 6226.750 3.883 −2.22 b −30.000 7.63 7.74 7.64 7.74 7.71 7.63 7.63 7.64 7.65 7.66 a 29.6

984 z3Do
2 – e3D2 4985.252 3.928 −0.56 a −29.930 7.39 7.37 7.40 7.45 7.47 7.35 7.36 7.37 7.47 7.48 ahk 117.2

984 z3Do
3 – e3D2 4896.440 3.883 −2.05 b −29.930 7.67 7.74 7.67 7.77 7.77 7.65 7.66 7.67 7.67 7.68 ac 38.8

1005 c3F4 – w5Go
3 6745.960 4.076 −2.77 m −30.764 7.62 7.68 7.62 7.71 7.70 7.61 7.62 7.63 7.63 7.64 acf 7.8

1005 c3F4 – w5Go
4 6793.260 4.076 −2.33 q −30.773 7.44 7.52 7.44 7.54 7.52 7.43 7.44 7.45 7.45 7.46 ac 14.3

1006 c3F4 – z1Go
4 6857.250 4.076 −2.15 b −30.786 7.57 7.65 7.58 7.67 7.64 7.56 7.57 7.58 7.58 7.59 ac 24.5

1012 c3F4 – y5Ho
5 6509.615 4.076 −2.97 m −30.720 7.48 7.57 7.48 7.57 7.59 7.48 7.48 7.49 7.49 7.50 dc 3.3

1014 c3F4 – y1Go
4 6315.815 4.076 −1.71 b −30.681 7.59 7.66 7.61 7.71 7.65 7.57 7.58 7.59 7.61 7.62 ac 42.1

1015 c3F2 – w3Fo
2 6380.750 4.186 −1.38 a −30.603 7.60 7.65 7.60 7.70 7.64 7.55 7.57 7.58 7.61 7.62 a 53.3

1015 c3F4 – w3Fo
4 6157.733 4.076 −1.26 b −30.637 7.60 7.64 7.62 7.71 7.65 7.56 7.56 7.58 7.61 7.62 a 62.0

1016 c3F2 – v3Do
1 6436.410 4.186 −2.46 m −30.618 7.58 7.69 7.58 7.68 7.66 7.58 7.58 7.59 7.59 7.60 a 10.8

1017 c3F3 – y3Ho
4 6127.906 4.143 −1.40 a −30.570 7.51 7.58 7.52 7.61 7.58 7.47 7.48 7.50 7.52 7.53 a 49.8

1018 c3F3 – v3Go
4 6165.370 4.143 −1.47 a −30.583 7.50 7.59 7.52 7.62 7.55 7.48 7.49 7.50 7.52 7.53 a 46.6

1018 c3F4 – v3Go
5 6027.056 4.076 −1.09 a −30.601 7.48 7.54 7.49 7.59 7.52 7.44 7.45 7.46 7.49 7.51 a 67.1

1022 c3F3 – x1Go
4 5811.930 4.143 −2.43 b −30.477 7.59 7.68 7.59 7.68 7.68 7.58 7.59 7.60 7.59 7.60 acg 11.9

1024 c3F4 – x3Ho
5 5494.470 4.076 −2.09 b −30.431 7.67 7.76 7.68 7.77 7.75 7.66 7.67 7.68 7.68 7.69 ac 26.5

1026 c3F2 – v3Fo
3 5680.260 4.186 −2.58 b −30.400 7.74 7.83 7.75 7.84 7.84 7.74 7.75 7.76 7.76 7.77 ac 11.4

1030 c3F3 – y1Do
2 5464.290 4.143 −1.40 a −30.380 7.32 7.40 7.33 7.43 7.39 7.31 7.31 7.32 7.33 7.34 a 40.5

1031 c3F2 – u3Do
3 5491.840 4.186 −2.19 q −30.380 7.49 7.59 7.50 7.59 7.57 7.49 7.50 7.50 7.50 7.51 a 13.7

1031 c3F3 – u3Do
2 5293.970 4.143 −1.87 b −30.380 7.60 7.69 7.60 7.70 7.68 7.59 7.60 7.61 7.61 7.62 a 31.8

1032 c3F3 – u3Do
2 5187.918 4.143 −1.37 a −30.380 7.63 7.71 7.64 7.74 7.70 7.60 7.60 7.62 7.64 7.65 a 61.1

1034 c3F2 – t3Do
1 5236.205 4.186 −1.50 a −30.380 7.36 7.44 7.36 7.46 7.44 7.35 7.35 7.36 7.38 7.38 a 33.0

1036 c3F2 – v3Po
1 5136.093 4.186 −2.12 b −30.380 7.67 7.75 7.67 7.76 7.76 7.66 7.67 7.68 7.68 7.69 a 22.5

1042 c3F2 – t3Go
3 4798.267 4.186 −1.17 a −30.380 7.27 7.35 7.27 7.37 7.35 7.24 7.25 7.25 7.28 7.29 a 45.2

1042 c3F4 – t3Go
5 4735.845 4.076 −1.32 a −30.380 7.74 7.81 7.73 7.83 7.81 7.68 7.69 7.71 7.74 7.76 a 63.6

1051 y5Do
3 – e5F2 6880.650 4.154 −2.37 m −30.262 7.64 7.74 7.64 7.74 7.71 7.64 7.65 7.66 7.66 7.66 a 15.0

1052 y5Do
1 – e3F2 6704.480 4.217 −2.66 m −30.167 7.56 7.66 7.56 7.65 7.65 7.55 7.56 7.57 7.57 7.58 ac 6.6

1052 y5Do
2 – e3F3 6786.880 4.191 −2.07 b −30.219 7.67 7.76 7.68 7.77 7.73 7.67 7.67 7.68 7.68 7.69 a 25.4

1052 y5Do
3 – e3F4 6916.700 4.154 −1.45 b −30.269 7.70 7.73 7.70 7.81 7.74 7.67 7.67 7.68 7.71 7.72 af 62.2

1057 y5Do
4 – e5G5 5677.680 4.103 −2.70 m −30.696 7.57 7.66 7.57 7.66 7.68 7.57 7.57 7.68 7.68 7.69 ac 7.4

1058 y5Do
3 – e7G4 5607.660 4.154 −2.27 m −30.577 7.58 7.68 7.58 7.67 7.67 7.57 7.58 7.59 7.59 7.60 a 14.8

1061 y5Do
1 – e3D1 5547.000 4.217 −1.91 b −29.904 7.61 7.69 7.62 7.72 7.69 7.61 7.61 7.62 7.62 7.63 df 27.8

1061 y5Do
3 – e3D2 5483.110 4.154 −1.41 a −29.907 7.47 7.52 7.47 7.56 7.55 7.44 7.45 7.46 7.49 7.50 a 48.1

1062 y5Do
0 – g5D1 5525.550 4.230 −1.08 q −29.903 7.37 7.43 7.38 7.48 7.44 7.35 7.35 7.36 7.40 7.41 a 58.0

1062 y5Do
1 – g5D2 5543.930 4.217 −1.14 b −29.904 7.57 7.61 7.57 7.67 7.64 7.54 7.55 7.56 7.61 7.62 a 64.0

1062 y5Do
3 – g5D3 5473.905 4.154 −0.76 i −29.907 7.45 7.47 7.46 7.55 7.51 7.41 7.42 7.44 7.49 7.51 ah 87.2

1064 y5Do
2 – e5P2 5473.180 4.191 −2.14 b −30.441 7.63 7.72 7.63 7.72 7.71 7.62 7.63 7.64 7.64 7.65 a 21.1

1064 y5Do
3 – e5P2 5386.340 4.154 −1.77 b −30.440 7.57 7.67 7.58 7.68 7.65 7.56 7.57 7.58 7.58 7.59 a 34.1

1066 y5Do
2 – h5D1 4917.234 4.191 −1.18 b −30.108 7.69 7.74 7.67 7.77 7.77 7.63 7.64 7.65 7.69 7.70 a 63.8

1066 y5Do
3 – h5D4 5088.160 4.154 −1.78 b −30.249 7.69 7.77 7.69 7.79 7.75 7.68 7.67 7.68 7.68 7.70 af 38.0

1068 y5Do
4 – f5G4 4835.871 4.103 −1.50 b −30.157 7.65 7.71 7.64 7.73 7.74 7.61 7.62 7.63 7.66 7.67 a 54.0

1069 y5Do
4 – e3G5 4842.788 4.103 −1.56 b −30.161 7.60 7.68 7.60 7.70 7.69 7.57 7.58 7.59 7.60 7.61 cd 50.9

1070 y5Do
0 – f3D1 4918.016 4.230 −1.36 b −30.055 7.68 7.75 7.68 7.77 7.77 7.65 7.66 7.67 7.69 7.70 ac 54.7

1070 y5Do
1 – f3D1 4892.862 4.217 −1.29 l −30.055 7.60 7.66 7.60 7.69 7.69 7.56 7.57 7.58 7.61 7.62 ac 54.1

1070 y5Do
1 – f3D2 4986.226 4.217 −1.39 b −30.119 7.59 7.66 7.59 7.69 7.68 7.56 7.56 7.57 7.60 7.61 b 46.8

1077 y5Fo
1 – e5F2 7491.648 4.301 −0.80 c −30.260 7.29 7.33 7.31 7.41 7.35 7.25 7.26 7.28 7.34 7.35 a 73.2

1077 y5Fo
2 – e5F3 7568.899 4.283 −0.60 c −30.280 7.22 7.25 7.25 7.36 7.28 7.20 7.21 7.22 7.28 7.29 ahk 84.7

1077 y5Fo
5 – e5F5 7511.020 4.178 0.10 a −30.350 7.45 7.40 7.46 7.56 7.56 7.45 7.44 7.46 7.59 7.61 dek 199.6

1083 y5Fo
5 – e5G5 5877.770 4.178 −2.23 b −30.703 7.58 7.68 7.59 7.69 7.66 7.58 7.59 7.60 7.60 7.61 a 16.8
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Table 2 (continued)

Mult Transition λ [Å] E [eV] log gf log C6 log ε(Fe I)� (0.85) log ε(Fe I)� (1.00) Rem Wλ
LTE 0+ 5+ 5- HM LTE 5+ 1+ 1+ 0.5+

-0.4 -0.4

1084 y5Fo
2 – f5F2 5826.640 4.283 −2.94 m −30.511 7.67 7.76 7.68 7.77 7.78 7.67 7.68 7.68 7.68 7.69 cd 4.0

1084 y5Fo
2 – f5F3 5861.110 4.283 −2.45 m −30.529 7.58 7.68 7.58 7.68 7.68 7.58 7.59 7.60 7.60 7.61 a 8.9

1084 y5Fo
3 – f5F4 5835.100 4.256 −2.37 b −30.556 7.74 7.84 7.75 7.84 7.83 7.74 7.75 7.76 7.76 7.77 ac 14.8

1084 y5Fo
4 – f5F5 5858.770 4.220 −2.26 b −30.624 7.57 7.67 7.58 7.67 7.66 7.57 7.58 7.59 7.59 7.60 a 13.8

1084 y5Fo
5 – f5F5 5742.950 4.178 −2.51 b −30.623 7.71 7.81 7.72 7.81 7.80 7.71 7.72 7.73 7.73 7.73 ac 13.2

1086 y5Fo
2 – e3D2 5814.800 4.283 −1.97 b −29.901 7.64 7.71 7.64 7.74 7.72 7.63 7.63 7.64 7.65 7.66 ac 24.6

1086 y5Fo
2 – e3D3 5969.550 4.283 −2.73 m −29.926 7.61 7.70 7.62 7.71 7.72 7.62 7.62 7.63 7.63 7.64 a 5.1

1086 y5Fo
4 – e3D3 5793.930 4.220 −1.70 b −29.925 7.56 7.62 7.56 7.65 7.64 7.54 7.55 7.56 7.57 7.58 ac 35.6

1087 y5Fo
1 – g5D1 5705.480 4.301 −1.36 q −29.900 7.38 7.45 7.39 7.48 7.47 7.36 7.37 7.39 7.41 7.42 acg 40.8

1087 y5Fo
2 – g5D3 5804.480 4.283 −2.04 b −29.901 7.64 7.71 7.64 7.74 7.72 7.64 7.65 7.66 7.66 7.66 b 22.6

1087 y5Fo
3 – g5D3 5731.770 4.256 −1.30 b −29.902 7.65 7.70 7.66 7.75 7.73 7.63 7.64 7.65 7.69 7.70 ac 61.3

1087 y5Fo
3 – g5D4 5873.210 4.256 −2.14 b −29.921 7.64 7.71 7.64 7.74 7.72 7.63 7.64 7.65 7.65 7.65 cd 19.8

1087 y5Fo
4 – g5D3 5638.266 4.220 −0.87 b −29.904 7.58 7.61 7.58 7.68 7.65 7.54 7.55 7.56 7.62 7.65 ah 80.3

1087 y5Fo
4 – g5D4 5775.090 4.220 −1.30 a −29.921 7.66 7.72 7.67 7.77 7.74 7.63 7.64 7.65 7.70 7.72 ac 61.9

1087 y5Fo
5 – g5D4 5662.516 4.178 −0.57 a −29.920 7.47 7.47 7.47 7.57 7.57 7.44 7.45 7.47 7.56 7.58 ahk 104.0

1088 y5Fo
3 – e5P2 5635.850 4.256 −1.89 b −30.444 7.83 7.91 7.83 7.93 7.90 7.81 7.82 7.83 7.83 7.84 ac 36.8

1088 y5Fo
3 – e5P3 5709.930 4.256 −2.34 m −30.485 7.60 7.69 7.60 7.69 7.69 7.59 7.60 7.61 7.61 7.62 cd 9.8

1089 y5Fo
3 – g5F2 5016.480 4.256 −1.69 m −30.092 7.62 7.69 7.62 7.71 7.70 7.60 7.60 7.61 7.63 7.63 cd 34.4

1089 y5Fo
3 – g5F4 5243.800 4.256 −1.15 b −30.219 7.67 7.73 7.68 7.77 7.73 7.64 7.64 7.65 7.67 7.68 ac 65.8

1090 y5Fo
2 – h5D1 5104.436 4.283 −1.69 b −30.112 7.66 7.74 7.67 7.76 7.75 7.65 7.66 7.67 7.67 7.68 a 35.1

1091 y5Fo
1 – f5P1 5197.939 4.301 −1.64 b −30.143 7.65 7.73 7.65 7.75 7.73 7.64 7.64 7.65 7.66 7.67 a 38.0

1091 y5Fo
4 – f5P3 5228.380 4.220 −1.29 b −30.252 7.75 7.81 7.76 7.85 7.81 7.71 7.72 7.73 7.76 7.77 df 64.8

1092 y5Fo
3 – f5G2 4986.905 4.256 −2.09 m −30.071 7.65 7.73 7.65 7.74 7.74 7.64 7.64 7.65 7.65 7.66 a 21.2

1092 y5Fo
5 – f5G6 5133.688 4.178 0.14 k −30.250 7.54 7.52 7.55 7.65 7.64 7.52 7.52 7.54 7.67 7.69 dhk 185.0

1094 y5Fo
4 – e3G4 4991.868 4.220 −1.91 b −30.119 7.43 7.52 7.44 7.53 7.53 7.43 7.43 7.44 7.44 7.45 b 19.8

1094 y5Fo
4 – e3G5 5074.748 4.220 −0.20 i −30.170 7.58 7.61 7.60 7.69 7.67 7.55 7.56 7.58 7.70 7.71 ak 137.0

1095 y5Fo
2 – f3D1 5023.230 4.283 −1.60 b −30.058 7.63 7.71 7.64 7.73 7.71 7.62 7.62 7.63 7.63 7.65 ac 37.8

1097 y5Fo
5 – e3H6 4962.576 4.178 −1.18 a −30.151 7.47 7.55 7.48 7.58 7.54 7.44 7.44 7.46 7.48 7.49 a 58.2

1102 y5Fo
3 – i5D3 4256.805 4.256 −1.56 m −29.593 7.57 7.66 7.58 7.66 7.67 7.56 7.56 7.57 7.59 7.60 a 39.5

1107 z3Po
0 – e3D1 5717.840 4.284 −1.13 b −29.901 7.59 7.62 7.61 7.71 7.66 7.57 7.57 7.58 7.61 7.62 ach 63.9

1107 z3Po
1 – e3D2 5753.122 4.260 −0.69 a −29.900 7.43 7.43 7.45 7.53 7.50 7.41 7.41 7.42 7.49 7.50 ach 88.3

1107 z3Po
2 – e3D2 5618.650 4.209 −1.28 a −29.904 7.49 7.54 7.50 7.59 7.54 7.47 7.47 7.48 7.51 7.52 a 53.7

1108 z3Po
0 – g5D1 5661.360 4.284 −1.76 q −29.901 7.41 7.49 7.42 7.51 7.50 7.41 7.42 7.42 7.42 7.43 ac 23.8

1108 z3Po
1 – g5D2 5652.320 4.260 −1.95 b −29.902 7.68 7.76 7.69 7.78 7.76 7.68 7.68 7.69 7.70 7.71 ac 27.6

1108 z3Po
2 – g5D2 5522.460 4.209 −1.55 b −29.904 7.61 7.69 7.62 7.72 7.68 7.59 7.60 7.61 7.63 7.64 a 45.6

1108 z3Po
2 – g5D3 5608.980 4.209 −2.40 m −29.904 7.62 7.71 7.62 7.71 7.71 7.61 7.62 7.63 7.63 7.64 df 11.7

1109 z3Po
1 – e5P2 5646.700 4.260 −2.50 m −30.444 7.58 7.67 7.58 7.67 7.67 7.58 7.58 7.59 7.59 7.60 ac 8.6

1109 z3Po
2 – e5P2 5517.080 4.209 −2.37 b −30.442 7.85 7.95 7.85 7.95 7.94 7.85 7.85 7.86 7.86 7.87 a 18.0

1110 z3Po
1 – g5F1 4992.787 4.260 −2.35 l −30.068 7.66 7.74 7.66 7.75 7.75 7.65 7.66 7.67 7.67 7.68 a 11.7

1110 z3Po
1 – g5F2 5025.080 4.260 −1.99 m −30.092 7.64 7.72 7.64 7.73 7.72 7.63 7.63 7.64 7.64 7.65 a 22.7

1111 z3Po
1 – h5D1 5056.860 4.260 −1.96 b −30.111 7.79 7.87 7.79 7.89 7.86 7.78 7.79 7.80 7.80 7.81 cd 31.8

1113 z3Po
1 – f5G2 4995.411 4.260 −1.89 b −30.071 7.37 7.46 7.38 7.46 7.47 7.37 7.37 7.38 7.38 7.39 a 16.2

1125 b1D2 – v3Fo
2 6035.340 4.294 −2.59 m −30.332 7.58 7.67 7.58 7.67 7.68 7.58 7.58 7.59 7.59 7.60 ac 7.3

1128 b1D2 – y1Do
2 5856.080 4.294 −1.33 a −30.294 7.27 7.36 7.28 7.37 7.33 7.26 7.27 7.28 7.28 7.30 ac 36.0

1129 b1D2 – x1Do
2 5837.710 4.294 −2.34 b −30.294 7.57 7.66 7.58 7.66 7.66 7.57 7.57 7.58 7.58 7.59 ac 10.7

1132 b1D2 – v3Po
1 5376.850 4.294 −2.31 b −30.294 7.78 7.87 7.78 7.86 7.87 7.77 7.77 7.78 7.78 7.79 ac 15.7

1142 z5Go
4 – g5D3 6054.100 4.371 −2.31 m −29.897 7.59 7.68 7.59 7.68 7.68 7.59 7.59 7.60 7.70 7.61 acg 10.6

1142 z5Go
5 – g5D4 6034.040 4.312 −2.42 m −29.921 7.58 7.67 7.59 7.68 7.67 7.58 7.59 7.59 7.59 7.60 a 9.6

1143 z5Go
2 – g5F1 5395.250 4.445 −2.17 b −30.078 7.93 8.01 7.93 8.02 8.01 7.93 7.93 7.94 7.94 7.94 ac 21.6

1143 z5Go
3 – g5F3 5487.160 4.415 −1.53 b −30.163 7.64 7.72 7.64 7.73 7.71 7.62 7.63 7.64 7.64 7.65 a 37.1

1144 z5Go
4 – h5D3 5466.396 4.371 −0.63 a −30.200 7.56 7.58 7.56 7.65 7.62 7.52 7.52 7.53 7.60 7.61 ahk 86.2

1144 z5Go
5 – h5D4 5441.320 4.312 −1.73 b −30.257 7.66 7.74 7.67 7.76 7.74 7.65 7.65 7.66 7.67 7.68 a 35.1

1145 z5Go
2 – f5G2 5398.284 4.445 −0.67 b −30.080 7.57 7.58 7.56 7.65 7.63 7.54 7.53 7.54 7.60 7.61 ahk 75.4

1145 z5Go
2 – f5G3 5461.540 4.445 −1.90 b −30.115 7.81 7.89 7.81 7.90 7.89 7.80 7.80 7.81 7.81 7.82 a 27.6

1145 z5Go
3 – f5G3 5389.479 4.415 −0.41 k −30.115 7.44 7.49 7.45 7.55 7.51 7.41 7.41 7.42 7.49 7.50 ahk 91.7

1145 z5Go
4 – f5G5 5546.510 4.371 −1.31 b −30.242 7.72 7.78 7.72 7.82 7.79 7.68 7.69 7.70 7.74 7.75 a 53.4

1146 z5Go
2 – e5H3 5364.871 4.445 0.23 k −30.060 7.36 7.40 7.39 7.47 7.47 7.35 7.36 7.38 7.49 7.50 ak 147.2

1146 z5Go
3 – e5H3 5295.299 4.415 −1.69 b −30.058 7.66 7.75 7.66 7.76 7.74 7.65 7.66 7.67 7.67 7.68 a 29.6

1146 z5Go
3 – e5H4 5367.466 4.415 0.44 q −30.100 7.27 7.26 7.25 7.35 7.37 7.24 7.25 7.27 7.39 7.40 ak 166.1

1146 z5Go
4 – e5H5 5369.961 4.371 0.54 a −30.160 7.27 7.25 7.27 7.37 7.36 7.24 7.24 7.26 7.39 7.40 bhk 194.5

1146 z5Go
5 – e5H6 5383.369 4.312 0.64 a −30.230 7.27 7.26 7.25 7.34 7.38 7.23 7.25 7.27 7.39 7.40 ak 213.6

1146 z5Go
6 – e5H6 5401.270 4.320 −1.92 b −30.228 7.69 7.77 7.69 7.78 7.76 7.68 7.68 7.69 7.70 7.71 ac 25.5

1146 z5Go
6 – e5H7 5424.068 4.320 0.52 k −30.240 7.51 7.51 7.49 7.58 7.62 7.48 7.50 7.51 7.64 7.65 a 240.9

1147 z5Go
4 – e3G5 5409.120 4.371 −1.30 b −30.174 7.76 7.82 7.77 7.87 7.83 7.73 7.73 7.75 7.77 7.78 dg 56.1

1148 z5Go
3 – f3D2 5417.030 4.415 −1.68 b −30.128 7.75 7.83 7.76 7.85 7.83 7.74 7.74 7.75 7.76 7.77 a 36.9

1148 z5Go
4 – f3D3 5406.770 4.371 −1.72 b −30.173 7.78 7.86 7.78 7.87 7.86 7.76 7.77 7.78 7.79 7.80 a 36.8

1150 z5Go
5 – f3F4 5023.480 4.312 −1.71 b −30.017 7.59 7.67 7.59 7.68 7.67 7.58 7.58 7.59 7.59 7.60 ac 28.4

1159 z3Go
5 – g5F5 5653.890 4.386 −1.64 b −30.274 7.75 7.83 7.76 7.85 7.84 7.73 7.73 7.74 7.75 7.76 b 38.0

1160 z3Go
5 – h5D4 5624.060 4.386 −1.48 b −30.261 7.85 7.93 7.86 7.95 7.92 7.83 7.84 7.85 7.87 7.88 a 51.7

1161 z3Go
3 – f5G4 5651.470 4.473 −2.00 b −30.175 7.73 7.81 7.73 7.82 7.81 7.73 7.73 7.74 7.74 7.75 a 19.1

1161 z3Go
5 – f5G4 5436.300 4.386 −1.54 b −30.171 7.71 7.80 7.73 7.82 7.79 7.70 7.71 7.72 7.74 7.74 a 43.5

1161 z3Go
5 – f5G6 5619.600 4.386 −1.70 b −30.259 7.74 7.82 7.74 7.83 7.81 7.72 7.73 7.74 7.75 7.76 a 34.8

1162 z3Go
4 – e5H4 5412.800 4.434 −1.72 q −30.103 7.44 7.53 7.45 7.53 7.53 7.44 7.45 7.46 7.45 7.46 a 19.5

1164 z3Go
3 – f3D4 5410.909 4.473 0.40 a −30.050 7.26 7.27 7.27 7.34 7.33 7.23 7.24 7.25 7.36 7.38 ehk 150.7

1164 z3Go
4 – f3D3 5560.230 4.434 −1.19 b −30.175 7.67 7.73 7.66 7.75 7.73 7.64 7.65 7.65 7.67 7.68 a 55.5

1164 z3Go
5 – f3D6 5415.199 4.386 0.64 a −30.160 7.28 7.27 7.27 7.35 7.38 7.23 7.25 7.26 7.39 7.40 ahk 205.0

1165 z3Go
4 – e3H4 5321.112 4.434 −0.95 a −30.047 7.20 7.29 7.21 7.31 7.28 7.18 7.19 7.20 7.22 7.23 a 42.4

1166 z3Go
3 – f3F4 5373.700 4.473 −0.86 b −30.027 7.58 7.63 7.58 7.67 7.65 7.54 7.55 7.56 7.60 7.61 a 68.5

1166 z3Go
4 – f3F4 5285.130 4.434 −1.64 b −30.025 7.59 7.67 7.60 7.68 7.68 7.58 7.59 7.60 7.60 7.61 a 29.0

1166 z3Go
5 – f3F4 5178.800 4.386 −1.84 b −29.600 7.65 7.73 7.65 7.73 7.76 7.64 7.65 7.66 7.66 7.67 al 26.3

1173 y3Fo
3 – e3D2 6858.160 4.607 −0.93 a −29.894 7.46 7.49 7.47 7.58 7.52 7.44 7.44 7.46 7.49 7.50 a 54.3
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Table 2 (continued)

Mult Transition λ [Å] E [eV] log gf log C6 log ε(Fe I)� (0.85) log ε(Fe I)� (1.00) Rem Wλ
LTE 0+ 5+ 5- HM LTE 5+ 1+ 1+ 0.5+

-0.4 -0.4

1173 y3Fo
4 – e3D3 6843.670 4.548 −0.93 b −29.931 7.59 7.59 7.60 7.69 7.63 7.56 7.57 7.58 7.63 7.64 a 63.7

1174 y3Fo
2 – g5D1 6804.020 4.652 −1.50 q −29.895 7.44 7.52 7.45 7.54 7.50 7.44 7.44 7.45 7.45 7.46 a 22.6

1174 y3Fo
3 – g5D2 6715.410 4.607 −1.64 b −29.894 7.66 7.73 7.66 7.75 7.72 7.65 7.65 7.66 7.67 7.67 acf 28.8

1174 y3Fo
4 – g5D3 6627.548 4.548 −1.68 b −29.892 7.67 7.75 7.68 7.77 7.74 7.67 7.67 7.68 7.69 7.70 ag 29.9

1175 y3Fo
2 – g5F1 5927.800 4.652 −1.09 b −30.087 7.54 7.62 7.55 7.64 7.61 7.53 7.53 7.54 7.55 7.56 c 45.3

1175 y3Fo
3 – g5F4 6159.410 4.607 −1.97 m −30.242 7.59 7.68 7.59 7.68 7.67 7.58 7.59 7.60 7.60 7.61 ac 13.9

1175 y3Fo
4 – g5F5 6105.150 4.548 −2.05 m −30.286 7.57 7.66 7.57 7.66 7.66 7.57 7.57 7.58 7.58 7.59 a 13.2

1176 y3Fo
2 – h5D2 6079.020 4.652 −1.12 b −30.157 7.65 7.72 7.66 7.75 7.71 7.63 7.64 7.65 7.66 7.67 a 49.2

1176 y3Fo
4 – h5D3 5929.700 4.548 −1.41 b −30.213 7.73 7.81 7.74 7.83 7.78 7.71 7.72 7.72 7.74 7.75 acg 41.1

1177 y3Fo
2 – f5P1 6094.420 4.652 −1.94 b −30.164 7.85 7.93 7.84 7.94 7.92 7.84 7.84 7.85 7.85 7.86 ac 20.9

1177 y3Fo
3 – f5P2 6093.660 4.607 −1.50 b −30.217 7.66 7.74 7.66 7.75 7.72 7.64 7.65 7.66 7.67 7.68 ac 32.9

1178 y3Fo
3 – f5G2 5807.970 4.607 −2.47 m −30.088 7.51 7.60 7.51 7.60 7.62 7.51 7.51 7.52 7.52 7.53 bc 3.1

1178 y3Fo
3 – f5G3 5881.280 4.607 −1.84 b −30.123 7.59 7.68 7.59 7.68 7.67 7.59 7.59 7.60 7.60 7.61 bc 18.6

1178 y3Fo
4 – f5G4 5852.190 4.548 −1.33 b −30.180 7.65 7.73 7.66 7.75 7.72 7.63 7.64 7.65 7.66 7.67 a 43.6

1178 y3Fo
4 – f5G5 6024.058 4.548 −0.12 k −30.250 7.62 7.61 7.63 7.73 7.67 7.59 7.60 7.61 7.71 7.73 ahk 124.5

1179 y3Fo
3 – e5H4 5855.130 4.607 −1.48 q −30.112 7.44 7.55 7.47 7.56 7.54 7.46 7.46 7.47 7.47 7.48 a 24.5

1179 y3Fo
4 – e5H4 5696.100 4.548 −1.72 q −30.109 7.33 7.42 7.33 7.42 7.41 7.33 7.33 7.34 7.34 7.34 ac 14.0

1180 y3Fo
2 – e3G3 5930.188 4.652 −0.23 k −30.088 7.51 7.54 7.55 7.64 7.58 7.50 7.51 7.53 7.59 7.60 ahk 97.0

1180 y3Fo
3 – e3G3 5806.730 4.607 −1.05 b −30.086 7.67 7.74 7.67 7.77 7.74 7.64 7.65 7.66 7.68 7.70 ac 58.2

1180 y3Fo
4 – e3G4 5752.037 4.548 −0.66 c −30.135 7.29 7.34 7.28 7.37 7.34 7.25 7.25 7.26 7.29 7.29 ac 57.5

1181 y3Fo
2 – f3D1 5905.670 4.652 −0.73 b −30.075 7.51 7.55 7.51 7.61 7.56 7.47 7.48 7.49 7.52 7.54 ac 63.7

1181 y3Fo
4 – f3D3 5859.592 4.548 −0.30 c −30.183 7.26 7.31 7.27 7.37 7.32 7.23 7.23 7.25 7.31 7.33 a 77.3

1183 y3Fo
2 – f3F3 5679.020 4.652 −0.92 b −29.956 7.71 7.75 7.71 7.80 7.77 7.67 7.68 7.69 7.73 7.75 ac 63.0

1184 y3Fo
2 – e3P2 5759.270 4.652 −2.07 m −29.999 7.60 7.69 7.60 7.68 7.68 7.60 7.60 7.61 7.61 7.61 ac 9.8

1192 y5Po
3 – f5F3 6738.000 4.558 −1.75 m −30.538 7.63 7.73 7.63 7.73 7.69 7.64 7.65 7.64 7.64 7.66 a 24.6

1194 y5Po
1 – e3D1 6833.240 4.638 −2.08 m −29.895 7.60 7.68 7.61 7.70 7.68 7.61 7.61 7.62 7.62 7.63 ac 10.1

1194 y5Po
2 – e3D2 6855.740 4.607 −1.82 m −29.894 7.64 7.71 7.65 7.74 7.71 7.64 7.65 7.66 7.66 7.67 de 19.0

1195 y5Po
1 – g5D0 6733.160 4.638 −1.58 b −29.895 7.64 7.72 7.65 7.74 7.71 7.64 7.64 7.65 7.66 7.67 a 28.4

1195 y5Po
1 – g5D1 6752.720 4.638 −1.20 q −29.895 7.46 7.52 7.46 7.56 7.52 7.44 7.45 7.46 7.47 7.48 a 38.1

1195 y5Po
1 – g5D2 6828.610 4.638 −0.92 b −29.895 7.55 7.60 7.56 7.66 7.62 7.53 7.54 7.55 7.60 7.61 a 59.1

1195 y5Po
2 – g5D3 6841.345 4.607 −0.75 b −29.894 7.53 7.55 7.53 7.62 7.58 7.49 7.50 7.51 7.56 7.57 d 67.5

1195 y5Po
3 – g5D4 6855.168 4.558 −0.74 a −29.923 7.59 7.61 7.60 7.70 7.64 7.56 7.57 7.58 7.65 7.67 bhk 76.9

1196 y5Po
3 – e7S3 6753.450 4.558 −2.29 m −30.543 7.55 7.64 7.55 7.64 7.61 7.55 7.55 7.56 7.56 7.57 a 7.2

1197 y5Po
1 – e5P2 6820.430 4.638 −1.32 b −30.466 7.71 7.80 7.71 7.81 7.74 7.69 7.69 7.70 7.72 7.73 a 44.0

1197 y5Po
2 – e5P3 6810.280 4.607 −0.99 a −30.502 7.54 7.63 7.55 7.65 7.59 7.51 7.52 7.53 7.55 7.56 a 53.4

1197 y5Po
1 – e5P1 6842.670 4.638 −1.32 b −30.474 7.69 7.78 7.69 7.79 7.73 7.66 7.67 7.68 7.70 7.71 a 39.9

1197 y5Po
2 – e5P1 6726.670 4.607 −1.00 c −30.472 7.52 7.58 7.51 7.61 7.55 7.47 7.48 7.49 7.51 7.52 a 49.9

1197 y5Po
3 – e5P3 6633.760 4.558 −0.80 a −30.498 7.65 7.69 7.65 7.75 7.68 7.60 7.60 7.61 7.64 7.65 b 72.7

1200 y5Po
3 – f5P3 6098.280 4.558 −1.88 m −30.272 7.60 7.69 7.61 7.70 7.69 7.60 7.61 7.62 7.62 7.63 a 17.3

1206 y5Po
3 – i5D3 4749.949 4.558 −1.34 b −29.607 7.58 7.68 7.58 7.67 7.66 7.57 7.57 7.58 7.59 7.60 ac 39.2

1225 d3F2 – u3Go
3 6716.240 4.580 −1.92 m −30.300 7.60 7.71 7.61 7.70 7.68 7.60 7.60 7.61 7.61 7.62 ac 16.8

1225 d3F3 – u3Go
3 6732.060 4.584 −2.21 m −30.299 7.57 7.67 7.57 7.66 7.66 7.57 7.57 7.58 7.58 7.59 a 8.5

1225 d3F3 – u3Go
4 6804.270 4.584 −1.81 q −30.299 7.48 7.58 7.48 7.58 7.56 7.48 7.48 7.49 7.49 7.50 ac 15.9

1225 d3F4 – u3Go
4 6837.000 4.593 −1.69 q −30.299 7.46 7.57 7.46 7.56 7.54 7.46 7.46 7.47 7.47 7.48 ac 18.7

1227 d3F2 – x1Do
2 6745.110 4.580 −2.16 m −30.300 7.55 7.65 7.56 7.65 7.64 7.55 7.56 7.57 7.57 7.58 ac 8.6

1228 d3F3 – u3Do
3 6667.719 4.584 −2.11 q −30.299 7.56 7.67 7.57 7.66 7.65 7.56 7.57 7.58 7.58 7.58 acg 10.2

1228 d3F4 – u3Do
3 6699.140 4.593 −2.10 q −30.299 7.48 7.59 7.49 7.58 7.57 7.48 7.49 7.50 7.50 7.50 ac 9.1

1229 d3F4 – t3Do
3 6591.320 4.593 −2.07 m −30.299 7.58 7.68 7.58 7.68 7.68 7.58 7.58 7.59 7.59 7.60 ac 11.0

1253 y3Do
2 – g5F1 6364.370 4.795 −1.43 b −30.093 7.68 7.77 7.69 7.78 7.79 7.68 7.68 7.69 7.70 7.71 bcl 28.5

1253 y3Do
3 – g5F3 6385.740 4.733 −1.91 m −30.187 7.58 7.66 7.58 7.67 7.66 7.58 7.58 7.59 7.58 7.59 a 11.6

1253 y3Do
3 – g5F4 6569.221 4.733 −0.42 b −30.255 7.63 7.65 7.64 7.76 7.68 7.58 7.60 7.61 7.66 7.68 ach 75.3

1254 y3Do
3 – h5D2 6330.860 4.733 −1.74 b −30.163 8.07 8.15 8.07 8.16 8.13 8.05 8.06 8.07 8.07 8.08 ac 34.6

1255 y3Do
2 – f5P2 6713.760 4.795 −1.60 b −30.237 7.69 7.77 7.69 7.78 7.75 7.68 7.69 7.70 7.70 7.70 a 21.7

1256 y3Do
3 – f5G3 6253.820 4.733 −1.66 m −30.131 7.59 7.67 7.59 7.68 7.67 7.58 7.58 7.59 7.59 7.60 bcl 20.1

1258 y3Do
1 – f3D2 6633.440 4.835 −1.49 b −30.155 7.77 7.85 7.78 7.87 7.82 7.76 7.77 7.78 7.78 7.79 bl 29.7

1258 y3Do
2 – f3D1 6338.900 4.795 −1.06 b −30.081 7.64 7.70 7.64 7.74 7.69 7.62 7.62 7.63 7.65 7.66 bcl 43.8

1258 y3Do
2 – f3D2 6496.473 4.795 −0.57 b −30.151 7.55 7.61 7.56 7.66 7.60 7.52 7.53 7.55 7.58 7.60 ac 66.3

1258 y3Do
2 – f3D3 6634.100 4.795 −1.43 b −30.206 7.78 7.85 7.78 7.88 7.86 7.77 7.77 7.78 7.78 7.79 bl 37.7

1258 y3Do
3 – f3D3 6419.954 4.733 −0.24 b −30.200 7.50 7.54 7.51 7.61 7.55 7.45 7.47 7.48 7.56 7.57 bl 89.8

1259 y3Do
3 – f3F4 6056.010 4.733 −0.46 k −30.036 7.56 7.59 7.56 7.66 7.62 7.51 7.52 7.54 7.59 7.60 a 74.2

1260 y3Do
2 – e3P1 5987.068 4.795 −0.15 c −29.910 7.25 7.30 7.26 7.36 7.30 7.22 7.22 7.24 7.29 7.30 a 76.1

1260 y3Do
2 – e3P2 6170.515 4.795 −0.44 k −30.003 7.66 7.68 7.68 7.78 7.72 7.61 7.63 7.64 7.69 7.71 cd 82.3

1260 y3Do
3 – e3P2 5984.822 4.733 0.17 c −30.001 7.09 7.15 7.11 7.21 7.15 7.06 7.07 7.09 7.15 7.16 ach 85.8

1281 x5Do
3 – i5D2 5552.700 4.955 −1.99 b −29.620 7.76 7.85 7.77 7.85 7.86 7.76 7.77 7.78 7.77 7.78 a 8.5

1313 x5Fo
4 – i5D3 5805.756 5.033 −1.59 b −29.624 7.69 7.78 7.69 7.78 7.77 7.68 7.68 7.70 7.70 7.70 ac 15.2

1313 x5Fo
4 – i5D4 5845.270 5.033 −1.82 m −29.624 7.55 7.65 7.55 7.64 7.65 7.55 7.56 7.57 7.56 7.57 ac 7.3

1313 x5Fo
5 – i5D4 5732.290 4.991 −1.56 b −29.622 7.65 7.74 7.65 7.74 7.74 7.65 7.65 7.66 7.66 7.67 ac 15.2

1314 x5Fo
1 – g5G2 5650.010 5.099 −0.92 b −29.627 7.67 7.77 7.67 7.76 7.71 7.65 7.64 7.67 7.68 7.69 a 37.7

1314 x5Fo
2 – g5G3 5650.710 5.085 −0.96 b −29.627 7.72 7.83 7.72 7.82 7.78 7.71 7.72 7.73 7.73 7.74 a 41.6

1314 x5Fo
3 – g5G4 5655.180 5.064 −0.64 b −29.626 7.65 7.75 7.66 7.75 7.72 7.64 7.64 7.66 7.67 7.68 a 55.1

1314 x5Fo
5 – g5G6 5633.950 4.991 −0.27 b −29.622 7.46 7.56 7.47 7.57 7.54 7.43 7.43 7.45 7.50 7.51 ac 72.6

Sources of f -values: (a) O’Brian et al. (1991), (b) May et al. (1974), (c) Meylan et al. (1993), (e) Blackwell et al. (1979a), (f) Blackwell et al.
(1976), (g) Blackwell et al. (1982a), (h) Blackwell et al. (1982b), (i) Bridges & Kornblith (1974), (j) Garz & Kock (1969), (k) Wolnik et al.
(1970), (l) Richter & Wulff (1970), (m) Gurtovenko & Kostik (1981), (n) Blackwell et al. (1979b), (o) Blackwell et al. (1980), (p) Bard et al.
(1991), (q) Bard & Kock (1994)
Line synthesis remarks: (a) no blend, no asymmetry, (b) resolved blend(s), (c) continuum adjusted, (d) unresolved blend(s), (e) core
asymmetry, (f) blue and red wing deficit, (g) only red wing deficit, (h) core too wide, (i) core too narrow, (j) core too deep, (k) core too shallow,
(l) all faint lines included
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One of the more surprising results of this evaluation of the
solar Fe I spectrum is that the number of truly weak lines with
both an acceptable spectral environment and laboratory f -value
is so small. This is the case for lines in a range of solar equiva-
lent widths from 3 to 30 mÅ. This has also been noticed among
others by Rutten & van der Zalm (1984). If laboratory analy-
ses were extended into the near infrared the line list could be
greatly extended because of decreasing blend problems. The
blue and near-ultraviolet spectral regions have been ignored
here because of the problems localizing the continuum below
4200 Å.

3.1. Spectrum synthesis

The final set of lines is reproduced in Table 2 together with all
relevant data. The sources of the f -values as well as the re-
marks in the second last column are noted at the end of the ta-
ble. The damping constants are calculated according to Anstee
& O’Mara’s (1991,1995) theory as in Paper I, and they are
given here in terms of van der Waals damping constants. The
equivalent widths in the last column are integrated on the basis
of the best synthetic fit of the solar flux profile. We emphasize
that they are not used for the line analysis which is solely based
on profile fits. Rather, they are derived from the theoretical pro-
file after the final profile fitting procedure. Their accuracy is
low, which is uncritical since they are used for graphical pur-
poses only.

3.1.1. Oscillator strengths

In order to determine abundance ratios in spectral lines of stars
other than the Sun it is often sufficient to know the product
gfε�, which can be obtained in the solar flux spectrum with
no particular knowledge of the f -value. Were it not for con-
sistency and identification checks and for the determination of
the solar iron abundance itself, no oscillator strengths would
be needed. Such consistency checks include the specification
of broadening parameters such as microturbulence and damp-
ing constants, because both can to a certain degree replace
abundances or oscillator strengths. Therefore a critical analy-
sis of the f -values is necessary. As mentioned above, oscillator
strengths available for Fe I lines come from essentially three
different methods:

– Theory has made important progress in the last 20 years.
This is not only seen in the bf cross-sections we used in our
kinetic equilibrium calculations but also in a virtually com-
plete set of calculated f -values made available by Kurucz
(1992). The main obstacle in using these data lies in the
problem of estimating their accuracy. Therefore we have
used Kurucz’ data for their original statistical purpose com-
puting particle interaction via the statistical equilibrium
equations whenever laboratory f -values were missing. But
we have not applied his f -values during subsequent spec-
trum synthesis.

– Laboratory methods have made some progress, too, and the
number of laboratory f -values is steadily increasing. It is
this origin we have put most confidence in, although the

reliability of the various sources as judged from their ability
to fit the solar flux spectrum is surprisingly different as we
will show below.

– The inversion method, i.e. measuring solar f -values by
synthesis of solar equivalent widths, has become a popu-
lar method to fill the missing data gap in the Fe I line list.
Whether based on equivalent widths or line profiles, this
method always reproduces an assumed abundance scale.
This is – in most cases – the meteoritic Fe I abundance,
sometimes it is tied to some otherwise established solar iron
abundance such as that of the Oxford group (cf. Gurtovenko
& Kostik 1981). It never carries information about the os-
cillator strength itself.

Of these three methods we have applied only the results of the
last two methods to spectrum synthesis, and in solar abundance
determinations we confine our sample to those lines for which
laboratory f -values are available.

3.1.2. Line broadening

During the analysis of the strong Fe I lines we have discussed
collision broadening at some length in Paper I, where it was
documented that the results of the broadening theory of Anstee
& O’Mara (1991,1995) provided the necessary adjustment be-
tween weak and strong line abundances at least in a qualitative
way. We have followed this approach in the present investiga-
tion, replaced the old van der Waals damping constants by the
new collision parameters, however, staying aware of the depen-
dence of abundance analyses upon atmospheric models. Thus,
the empirical model of Holweger & Müller (1974) requires sig-
nificantly higher damping constants than our theoretical model
in order to fit solar strong line profiles with the same abundance
as the weak lines. In fact, we have added to our sample of NLTE
models two more items with reduced damping constants in or-
der to explore their influence on the mean Fe I abundance. We
come back to this point in subsection 3.2.2.

The introduction of weak lines, among them many lines
broadened by microturbulence, has considerably enhanced our
possibility to judge the solar line spectrum and the necessary
atomic data. So the present analysis required an extension of
the parameter space covered by non-thermal motions to put
both weak and turbulence lines on a common abundance level.
In fact, irrespective of the source of f -values, lines between
50 and 120 mÅ tend to require systematically higher abun-
dances than weak or very strong lines if the value of Paper
I, ξ = 0.85 km s−1 was used. We introduced a second mean
value of ξ = 1.00 km s−1 which seems more appropriate for
our present investigation. Note that this value has only limited
influence on the strong lines, so our former results stay essen-
tially unchanged.

As will be shown in subsection 3.1.3, the details of turbu-
lent line broadening are still unsatisfactory for a number of
medium-strong lines. Whereas all weak lines with equivalent
widths below Wλ ∼ 70 mÅ and most of the very strong lines
are well represented by the synthetic line profiles, some lines
around Wλ ∼ 70 . . . 120 mÅ are not reproduced by any choice
of model parameters. This was noticed already in Paper I when
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Fig. 2. Abundance differences between lines synthesized in our plane-
parallel LTE (TH) model and those obtained from a hydrodynami-
cal solar model of Asplund et al. (2000). Lines that were synthesized
in our plane-parallel model with continuum adjustment are drawn as
open circles

trying to fit Fe II multiplet 42 or Fe I multiplets 1 or 36. The
present selection of Fe I lines includes quite a lot of such lines
that seem to document the ultimate difference between plane-
parallel and hydrodynamical models. Following this difference
it is interesting to compare the results of the two completely
different model realizations of non-thermal motions. Therefore
the results of Asplund et al. (2000) have been confronted with
our data in Fig. 2.

It is true that the mean abundance of the 49 lines in com-
mon is different by ∆log ε � 0.05 (or even slightly more for
turbulence lines), and this could be interpreted as the differ-
ence between plane-parallel and hydrodynamical models. But
a closer view reveals that most of the weaker lines belong to
a category that requires some continuum adjustment with re-
spect to the solar flux atlas of Kurucz et al. (1984). There are
some spectral regions that suffer from unknown continuum de-
pressions, and whenever such an adjustment was used in our
calculations, the abundance differences between our respective
models shrank to a mean ∆log ε � 0.03, more probably near
the true difference between the models. It is interesting in this
respect that the bulk of turbulence line abundances between 60
and 90 mÅ is systematically higher than those calculated from
the hydrodynamical model. This is also found in our own data
when strong lines and turbulence lines are compared, and it
would mean that exactly this type of lines is not particularly
well synthesized by plane-parallel models.

We emphasize, however, that a single value for the micro-
turbulence velocity cannot be assumed to reproduce all types of
core saturation found in turbulence lines. Our simple approxi-
mation is inconsistent in that it ignores the corresponding varia-
tions found and accepted for the macroturbulence velocity, and
a free fit of the ξ parameter for each line profile would have pro-
duced slightly improved results. Comparison with Asplund et
al. (2000) finally shows that both weak and strong lines are not
strongly affected by dynamic processes, which means that the
conventional replacement of laminar flow patterns by a micro-
/macroturbulence approach is still surprisingly valid.

3.1.3. Line profiles and equivalent widths

The overwhelming majority of publications is devoted to the in-
vestigation of equivalent widths which is mostly due to the easy
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Fig. 3. Typical problems with the adjustment of the local solar flux at-
las continuum. Top: Weak line in Mult 1142 with no changes of the
local continuum necessary. Bottom: Mult 1109 shown with and with-
out continuum adjustment. The original atlas spectrum is reproduced
with open circles and fitted by the grey curve with log εFe = 7.63 and
Ξ = 4.0 km s−1

access to such data in the literature. The critical examination of
line profiles instead makes available an increased amount of
information about line formation and stellar atmospheric con-
ditions. Our present work on NLTE effects in Fe I lines is based
on roughly 4000 line profiles, and their evaluation is coded in
a very coarse set of remarks in Table 2. Such remarks combine
the average profile properties of all models for a particular line,
and the following description will show only typical properties.

Very weak lines (Wλ < 10 mÅ):

Only 10% of the total sample consist of very weak lines. Most
of them could be selected to be free from known blends, but
only 10 of them were unaffected by problems with continuum
adjustment. It is this latter quality that makes the analysis of
very weak lines so ambiguous. This can be seen in Fig. 3 where
the LTE profile fits for two lines are shown. Continuum adjust-
ment is by far not always as small as 0.5% as it is for the line in
Mult 1109, and ignoring it may lead to abundances higher by
up to 0.15 dex in single cases.

It is no straightforward procedure to decide which lines to
submit to continuum adjustment, because this requires a look at
the whole spectral region. Consequently, we have adjusted the
atlas continuum only if there is a continuum depression over
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Fig. 4. Profiles of weak lines (10 < Wλ < 60 mÅ) of Fe I in the solar flux spectrum (filled circles). Synthetic profile fits are for LTE and HM
( ) or TH ( . . . . . ) atmospheres. Fit parameters are indicated
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at least 10 Å. In some cases we tried to synthesize faint back-
ground lines in order to estimate their influence on the con-
tinuum position. While weak lines should be least affected by
broadening and therefore yield most reliable abundances, the
continuum placement destroys a substantial part of this argu-
mentation.

Weak lines (10 < Wλ < 60 mÅ):

These lines constitute the majority of the sample with more
than half in this range of equivalent widths. Up to 30 mÅ the
lines do not depend significantly upon microturbulence, but
their abundance change increases to −0.03 per 0.1 km s−1 at
60 mÅ. A number of weak lines that are fairly representative
of our sample is reproduced in Fig. 4, together with LTE profile
fits for both the HM and TH models. They are shown in partic-
ular to demonstrate the abundance differences between the two
models. It should be mentioned here that this subsample of Fe I

lines produces by far the best profile fits, followed by the strong
lines, the very weak lines, and the turbulence lines, in order of
decreasing fit quality. The profiles of the weak lines are not
dictated by core saturation or line wing broadening but, nearly
exclusively, by external line broadening due to solar rotation
and macroturbulence. As is the case for some of the very weak
lines, some weaker lines in Fig. 4 require a high macroturbu-
lence of Ξ > 4 km s−1 in order to adjust the wings.

We note that the quality of the profile fit is the same for both
atmospheric models, irrespective of the abundance differences.
Thus most of the very weak and weak lines show a systematic
abundance difference of ∆(log εFe,�)HM−TH = 0.06 . . . 0.12
(see below). As with the very weak lines, there is also no prob-
lem when fitting the profiles of the weak lines with different
NLTE models (not shown in Fig. 4). However, the kinematic
properties of all lines with equivalent widths below 100 mÅ are
reproduced in a number of profiles that show systematic bisec-
tor curvature and a red line wing deficit. An even more critical
inspection of some of the profiles reveals synthetic line cores
that tend to be too broad even for ξ = 0.85 (TH) or 1.00 (HM)
km s−1, respectively. This is evident in particular for lines that
are formed further up in the atmosphere, and – together with
the red wing asymmetries – it clearly documents the pitfalls of
static atmospheric models. Some of the weak lines are also af-
fected by a bad definition of the local continuum, which either
lead to a removal of a significant number of lines originally se-
lected or ended in a multi-line synthesis with a number of faint
background lines included. Such results are not given too much
weight in the abundance analysis.

Turbulence lines (60 < Wλ < 110 mÅ):

Roughly 20% of our sample are strong enough for core satu-
ration and are therefore shaped by the value of the microtur-
bulence parameter. Naturally, a static model atmosphere repro-
duces such lines only in an approximative way. This is seen
in Fig. 6 where a number of such lines and their synthetic fits
are presented. Most of these fits require substantially smaller
values of the macroturbulence velocity Ξ, but even then the
synthetic core profiles are often too broad and too shallow.

In contrast to weaker lines for which the fit with synthetic
profiles can be made nearly as accurate as desired, the fit of
turbulence lines with a plane-parallel atmospheric model has
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Fig. 5. LTE profiles of Fe I 66, 5250.646 Å. Models are as in Figs. 4
and 6. Additionally, a TH LTE model with ξ = 1.0 km s−1 is plotted
for comparison (dashes). The deep profiles are uncorrected for rotation
and macroturbulence, the ”v”-shaped profiles include external broad-
ening

its natural limitations which are explained by the velocity dif-
ferences necessary to fit the innermost core and the wings si-
multaneously. Thus, in principle the saturated core seems to
require relatively small velocity fields, whereas the opposite is
required for the wings, a modulation that roughly represents
the hydrodynamic equation of continuity. The microturbulence
values used in the LTE models of Fig. 6 have in fact been cho-
sen so as to fit the line core width. Using even larger values
as would be indicated by comparison with weak and strong
lines does not improve the profile fits although it may help
to minimize the overall abundance scatter. Fig. 5 emphasizes
the difference in core saturation between the two model atmo-
sphere types (HM and TH). Due to the temperature differences
between the atmospheric models profiles synthesized from the
HM model always require a smaller macroturbulence to fit the
very line core than do the LTE or NLTE profiles based on the
TH model.

We note that turbulence velocity gradients introduced
within the scope of static plane-parallel models do not improve
the profile fits either. The kinematic fine-tuning of the turbu-
lence lines thus will stay the exclusive domain of granular hy-
drodynamics.

Again, as with the weaker lines, LTE and NLTE models
both tend to produce similar profile fits for the turbulence lines
provided that the abundances are correspondingly adjusted.
This is a direct consequence of the source function thermaliza-
tion inherent to our NLTE modelling. As can be seen in Table 2,
lines with equivalent widths around 100 mÅ display an abun-
dance spread of ∼ 0.2 dex among different LTE and/or NLTE
models.

The profiles of the stronger Fe I lines (Wλ > 110 mÅ) have
been discussed in Paper I. It is therefore sufficient to repeat
here, that simultaneous fits of line cores and damping wings are
only obtained outside the range of the inner wings (±0.1 . . . 0.4
Å).
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Fig. 6. Profiles of turbulence lines (60 < Wλ < 110 mÅ) of Fe I in the solar flux spectrum (filled circles). Synthetic profile fits are again for
LTE and HM ( ) or TH ( . . . . . ) atmospheres. Fit parameters are indicated
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Fig. 7. LTE profiles of Fe I 1197, 6726.670 Å, computed with the HM
model atmosphere displaying the sensitivity of turbulence lines with
respect to abundance changes

3.2. Abundances

Our investigation of NLTE excitation and ionization in the so-
lar photosphere would not be complete without mentioning the
solar Fe I abundance problem. Since there exists quite a number
of publications on the ”true” solar Fe I abundance (e.g. Biémont
et al. 1991, Blackwell et al. 1995a,1995b, Holweger et al. 1995,
Kostik et al. 1996, Grevesse & Sauval 1999), we will not en-
ter into details but simply give our judgement according to the
large number of lines of all strengths examined with reference
to complete profile information (but ignoring their center-to-
limb variation) and an exhaustive range of NLTE models.

Current analyses tend to put their results into perspective by
denoting the differences between photospheric and meteoritic
Fe I abundances. The latter has been known for many years now
(Anders & Grevesse 1989), log εFe i,� = 7.51. Photospheric
abundance determinations, however, range from log εFe i,� =
7.42 (Schnabel et al. 1999, Fe II) to 7.67 (Blackwell et al.
1995a, Fe I). As was pointed out by Kostik et al. (1996) and
later iterated by Grevesse & Sauval (1999), the discrepancy be-
tween different groups of researchers depends on a number of
different methods and data sets the influences of which are not
always easily disentangled.

A few problems have already been discussed above, in par-
ticular the important influence of selecting a local spectral con-
tinuum. Other problems arise when determining abundances
based on measurements of equivalent widths. Thus, Meylan et
al. (1993) have used Voigt profile fits to reproduce their ob-
served Fe I lines. Their results differ systematically from those
of other methods produced either by planimeter measurements
or – as in our case - from full line profile synthesis. This is an
important source of systematic errors because anything but fit-
ting synthesized profiles requires an estimate of the line wing
extension that is often – and always systematically – neglect-
ing a weak line haze. One of the more moderate examples is
reproduced in Fig. 7. For this line Meylan et al. (1993) list an
equivalent width of 53.6 mÅ, obtained from their Voigt profile
fit. Our synthesis reproduces the observed solar flux spectrum
with no continuum adjustment applying an Fe I abundance of

log εFe i,� = 7.55, whereas their equivalent width requires an
abundance ∼ 0.1 dex higher than ours. More importantly, their
equivalent width does not fit the observed profile. Other turbu-
lence lines listed by Meylan et al. show even larger discrepan-
cies up to 0.3 dex! Therefore it is not surprising that – using
the f -values published in that paper – we derive a mean so-
lar abundance of log εFe i,� = 7.25. Altogether, at this stage of
analyzing the solar Fe I abundance we ignore solar f -values be-
cause they would not add to abundance information, since their
determination requires the input of a mean abundance value.

3.2.1. Sources of oscillator strengths

Except for the results of Meylan et al. (1993) and Gurtovenko
& Kostik (1981) Table 2 contains only references to laboratory
f -values that cover more than 80% of the lines. Among them
we find essentially four different sets of data,

– The laser-induced fluorescence measurements of O’Brian
et al. (1991),

– f -values obtained from stabilized arc-emission by May et
al. (1974),

– Observations of stabilized furnace absorption by the
Oxford group of Blackwell et al. (1976,1979a,1979b,1980,
1982a,1982b)

– Hollow-cathode and laser-induced fluorescence measure-
ments performed by the Hannover group of Bard et al.
(1991,1994)

The rest of the sources is not very important for our investiga-
tion. The results listed in Table 2 refer to a broad selection of
methods which have been repeatedly discussed (see Holweger
et al. 1995, Kostik et al. 1996 or Grevesse & Sauval 1999).
We start with a plain characterization of the abundance results
obtained with the different sets of f -values.

The top frame of Fig. 8 shows LTE abundance results ob-
tained from the HM empirical model atmosphere using the
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Fig. 8. Logarithmic solar abundances as a function of equivalent width
in mÅ determined with the HM solar model in LTE and ξ = 1.0
km s−1. Top: Oscillator strengths from May et al. (1974, filled circles)
and from O’Brian et al. (1991, open circles). Bottom: f -values from
the Hannover group (sources p,q of Table 2, filled circles) and from
the Oxford group (sources e,f,g,h,n,o of Table 2, open circles). The
range of ±1σ r.m.s. scatter is indicated by the shading
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data of O’Brian et al. (1991) and May et al. (1974), whereas
the bottom frame of Fig. 8 displays the results for the oscilla-
tor strengths determined by the Oxford and Hannover groups.
While the proper choice of models and parameters is discussed
in the following subsection, it is already evident here that the
two frames harbour sources of different quality. Thus, the f -
values of O’Brian et al. or May et al. lead to approximately
twice the r.m.s. scatter of the solar abundances as compared
with the results derived from the f -values of the Oxford and
Hannover groups. The May et al. abundances are also system-
atically higher than the mean.

The f -values of O’Brian et al. and those of Bard and Kock
(1994) are on the same absolute scale since both have used
very similar measurements and normalization procedures. In
fact, Fig. 3 in Bard & Kock shows a negligible difference of
the corresponding f -values for the lines in common, although
the strong scatter is confirmed. What makes the O’Brian et al.
sample so suspicious is the occurrence of abundance differ-
ences between lines in a common multiplet. An extreme case
is Mult 66, where our results for λ5145.099 and λ5250.646
lead to log εFe i = 7.34 and 7.76, respectively. There are also
other lines such as λ4798.267 and λ4735.845 of Mult 1042
with log εFe i = 7.35 and 7.81, respectively.

There is no simple explanation why the oscillator strengths
of May et al. and those of Bard and Kock (1994) lead to dif-
ferent abundances. The data used in our analysis are those in
Fuhr et al. (1988), which had been renormalized to the scale
of the Oxford measurements. Most of the corrected May et al.
f -values are therefore 0.1 dex smaller than the original data.
Based on the original paper, the May et al. abundances thus
would be 0.1 dex smaller. While this accounts for half of the
difference between the two groups, there remains another 0.1
dex difference which is not seen in Fig. 2 of Bard & Kock.
However, the r.m.s. scatter of both the original and the renor-
malized data set of May et al. is even slightly larger than that
of O’Brian et al., and differences such as in λ5395.250 and
λ5487.160 of Mult 1143 with log εFe i = 8.01 and 7.71, re-
spectively, are also found in their sample.

Interestingly enough some of the more recent measure-
ments of the Oxford and Hannover groups seem to produce
substantially smaller scatter. Whereas σ(log ε) ∼ 0.15 for the
O’Brian et al. and May et al. samples, σ(log ε) ∼ 0.05 . . . 0.07
for the Oxford and Hannover lines. Fig. 8 shows a marginal dif-
ference between the two groups, but that depends on a partic-
ular choice of our models with (∆ log εFe i)Oxf−Han = 0.067
for the HM LTE model and 0.026 for the TH LTE model. Let
us mention here that line-by-line comparison of f -values of the
two groups leads to a difference of (∆ log gfFe i)Oxf−Han =
−0.029 ± 0.009.

In order to evaluate the solar iron abundance we thus de-
cided to disregard all but the Oxford and Hannover f -values.
Unfortunately, this choice reduced our line sample from 391 to
97 lines. Fig. 8 demonstrates that all of the weak lines in this
combined sample are from Hannover sources whereas most
of the strong lines were measured in Oxford. This correlates
nicely with excitation energies, such that all low-excitation
lines come from Oxford sources and all high-excitation lines
are due to Hannover measurements.

Table 3. Solar Fe I abundances based exclusively on the f -values of
the Oxford and Hannover groups, calculated for different models of
line formation. Note that ∆ log C6 refers to Anstee & O’Mara’s damp-
ing constants. It was chosen so that the mean abundances did not de-
pend on equivalent width (see left panels in Fig. 9). See text for further
discussion

Model ξ [km s−1] ∆ log C6 log εFe i,�

0 TH LTE 0.85 -0.12 7.508 ± 0.080
1 NLTE 0+ 0.85 -0.23 7.605 ± 0.087
2 NLTE 5+ 0.85 -0.10 7.521 ± 0.089
3 NLTE 5- 0.85 -0.15 7.629 ± 0.094
4 HM LTE 1.00 0.09 7.574 ± 0.074
5 TH LTE 1.00 -0.14 7.477 ± 0.070
6 NLTE 5+ 1.00 -0.12 7.488 ± 0.075
7 NLTE 1+ 1.00 -0.13 7.503 ± 0.077
8 NLTE 1+ 1.00 -0.16 7.499 ± 0.075
9 NLTE 1/2+ 1.00 -0.17 7.509 ± 0.077

3.2.2. The solar iron abundance

Irrespective of the choice of the f -values the solar Fe I abun-
dances as calculated from fitting the solar flux spectrum depend
sensitively on the model assumptions. Blackwell et al. (1995a)
and Grevesse & Sauval (1999) both have reported that the HM
empirical solar model leads to Fe I abundances systematically
higher than those obtained from theoretical models or other
empirical models with a lower temperature in their upper lay-
ers. This is to be expected under the assumption of LTE since
the source function then is always Planckian, and the emerging
intensities in theoretical models will to first order follow the
temperature stratification. It is, however, not evident for NLTE
line formation, since there both the source function and the op-
tical depth scale may deviate from their thermal behaviour.

In Paper I the level populations had been discussed for a
number of LTE and NLTE population models. It was argued
there that in most of the NLTE models – at least those with
non-zero hydrogen collisions – the line source functions were
very close to thermal, and the differences of line profiles with
respect to LTE occurred essentially due to parametrization of
(a) hydrogen collisions and (b) a cutoff energy above which all
levels were thermalized with respect to the Fe II ground state.
The latter operation had to be included to simulate the missing
ionization/recombination channels. The different populations
are shown in Fig. 6 of Paper I, and as yet we have not been able
to choose a best case model on the basis of comparison with
the strong lines only.

Fig. 9 therefore gives an impression of how the solar Fe I

abundances obtained from line profile fits based on different
LTE and NLTE models with different line-broadening param-
eters depend on the model assumptions. As mentioned above,
only the Oxford and Hannover group f -values have been con-
sidered. With respect to Table 1 the models in Fig. 9 are mod-
ified using the original models 7 and 8 of Table 1 to interpo-
late corrections of the damping constant so that the resulting
mean abundances are independent of line strength. As docu-
mented in Table 3 these additional corrections are always small.
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Fig. 9. Solar Fe I abundances as a function of Wλ (left) and lower-level excitation energy Elow (right), calculated for different models of line
formation. Oscillator strengths are from the Oxford (open circles) and Hannover groups (filled circles). See text for further explanations
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Fig. 10. Solar flux spectrum of Fe I 41, λ4404.750 Å, together with
three nearly identical synthetic profile fits using the HM LTE, the TH
LTE and the TH NLTE 1+ models. See text for a discussion of strong
lines

Comparing models 7 and 8 in Table 3 it is evident that the two
interpolated results do not differ significantly.

Four characteristic features are displayed in Fig. 9,

1. There is still a systematic difference between abundances
(oscillator strengths) of the Oxford and Hannover groups
which is seen best in the domain of the turbulence lines
around 80 to 100 mÅ. It is also found as a difference
between lines of low and high excitation. This would be
even easier to detect if the adjustment of the damping con-
stants were applied to the individual sets of lines calcu-
lated from a common base of f -values. For our model
(4) in Fig. 9 the Oxford data alone then would require a
damping correction of ∆log C6 = −0.28, and they would
lead to the value of log εFe i,� = 7.693 ± 0.052, reason-
ably close to that of Blackwell et al. (1995a). Vice versa,
LTE in the HM model (4) applied only to the Hannover
f -values would require ∆log C6 = +0.13, and result in
log εFe i,� = 7.543 ± 0.070. Our compromise to fit the
combined data set thus does not at all resolve the long-
standing discrepancy. It is important to recognize that this
problem does not seem to depend on the particular LTE or
NLTE model chosen. The difference between the Oxford
and Hannover line abundances is only slightly smaller (0.10
dex) for the TH LTE model. It is removed here only by ad-
justment of the damping constants for the individual mod-
els, the shortcomings of which are hidden in a slightly in-
creased scatter.

2. The turbulence lines deviate from both weak and strong
lines in models (0) to (3), and perhaps in the HM LTE
model (4) because the mean microturbulence is relatively
low. This choice was made in Paper I mostly to model
a number of the stronger turbulence lines with equivalent
widths around 100 mÅ. After having examined a series
of tests with different values we concluded that a value of
ξ = 1.0 km s−1 produced profile fits of approximately the
same quality. As is evident from comparing models (0) and
(5) in Fig. 9 the higher value of ξ tends to improve the uni-
formity of the abundances. A similar increase would also
improve the results of the HM model.

3. Even after having adjusted the strong lines to fit to a com-
mon mean abundance with the weaker lines it is surpris-
ing how they lead to systematically lower abundances than
the sample mean. Part of this difference may be attributed
to a relatively bad fit of the line wings. Fig. 10 shows the
discrepancy between inner and outer wing synthesis. Both
parts of the profile are of photospheric origin. We note that
a slightly better fit of the outer wings can be achieved with
an increase of the iron abundance by � 0.03 dex which,
however, would not remove the trend. Moreover, it would
destroy the fit of the inner wing to an unacceptable degree.

4. The run of abundances with excitation energies displays a
decrease with Elow for most of the models. As was empha-
sized by Blackwell et al. (1995a) and Grevesse & Sauval
(1999) this tendency is relaxed or even removed by intro-
ducing atmospheric models with lower temperatures in the
upper photosphere. This trend is confirmed when compar-
ing the HM and TH LTE models in our analysis. However,
care must be taken not to confuse it with a similar one pro-
duced by the dependence upon microturbulence. The cur-
rent sample of Fe I lines includes quite a number of low-
excitation lines in the turbulence regime (Mults 1, 2, 3 and
13), which dominate the least-squares approach in Fig. 9.
This becomes particularly evident by comparison of the
LTE model (0) and (5), and by the NLTE models (2) and
(6), where the increase of ξ from 0.85 to 1.00 km s−1 re-
moved most of the energy dependence.

The solar iron abundance determined by even the most
careful spectral analysis thus depends on the proper choice of
both the atmospheric model and the oscillator strengths. While
Grevesse & Sauval (1999) claim to have solved the discrepan-
cies of the long-standing debate on the solar iron abundance
by introducing their special semi-empirical adjustment to the
HM atmospheric model, it is only fair to notice that even their
final data produce an abundance difference with mean values
of (log εFe i,�)Han = 7.476 ± 0.053, and (log εFe i,�)Oxf =
7.514±0.036. What makes this result less useful is the neglect
of all strong lines. As was shown above it is the strong lines in
the Oxford sample that – having been adjusted to the weaker
lines by a corresponding decrease of the damping constants –
confirm the high solar Fe I abundance claimed by Blackwell
et al. (1995a). Different from the Kiel-Hannover group the
Oxford group does not cover the full range of line strengths and
excitation energies encountered in the solar spectrum. In par-
ticular the weak lines are missing, for which an analysis would
allow a direct comparison of the f -value sources without refer-
ence to the uncertainties of line broadening processes.

There is no use ignoring the fact that either the oscilla-
tor strengths currently available are discrepant at a level that
cannot be explained by laboratory measurement errors alone,
or that the solar spectral line identifications are erroneous at
an equally unacceptable level, or that atmospheric inhomo-
geneities are much more important for individual lines than
expected. Let us discuss all three possibilities.

Much of the different absolute scales of f -values is due to
the necessary normalization which can be improved; however,
an individual scatter of lines in a common multiplet is obtained
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even for experimental methods thought to be very accurate.
As an example let us consider the abundance scatter of lines
in Mult 114. All lines have been measured by the Hannover
group, and the abundances spread from 7.41 at λ5141.739 to
7.65 at λ5049.819 to a value as high as 7.78 for λ4924.769
if the HM LTE model is applied. These are not faint lines for
which high measurement errors could be accepted; the experi-
mental error estimates range from 0.04 to 0.07 dex for these
lines, which transforms to the fact that our abundances lead
to results that are discrepant on much more than a 3σ level. Of
course, the results may tell us that the hollow-cathode measure-
ments of λ5141.739 are not of the same quality as the other two
lines which were measured by laser-induced fluorescence, but
that would invalidate the experimental error estimates.

Comparison of such multiplet abundance scatter based on
common source f -values with that already discussed above in-
dicates that this does not depend very much on the experimental
methods either, although there may exist still a number of prob-
lems that are connected with the control of experimental envi-
ronment parameters as discussed by Holweger et al. (1995).
Thus we conclude that agreement of mean abundance values
between different sources of oscillator strengths (often claimed
for the O’Brian et al. data) is not a significant measure of me-
thodical accuracies. Taken at face value the r.m.s. scatter of
abundances obtained from a single set of oscillator strengths
such as that of O’Brian et al. is a measure of the accuracy of
the mean solar Fe I abundance that can be reached with these
data. In fact the accuracy is then even less due to blends and
other problems referring to the profile fits, and to the ambigui-
ties of atmospheric modelling.

There exists a number of lines in the iron spectrum that
could be misidentified in that the spectral features could be
blends that are not only unresolved but also fall within a few
mÅ of the same center wavelength. As with other undetected
blends such profiles will be fitted with too large abundances.
This should produce abundance distributions that are system-
atically shifted to the high-abundance side, something that is
not detected in the results. To reduce the dominating intrinsic
abundance scatter to reasonable amounts it would mean that
more than half of the lines would have to be corrected for such
blend or identification problems, a situation that seems highly
unlikely. We note that many blend problems of the kind pro-
ducing too large fit abundances are avoided by our profile fit-
ting method which allows an exchange of certain fit parame-
ters such as abundance, microturbulence or damping parame-
ters only within a narrow region. In such cases the profile fit
procedure always tends to produce higher abundances.

Our discussion of line broadening in subsection 3.1.2 and
Fig. 2 has shown that the true abundance differences resulting
from line formation in plane-parallel and in hydrodynamic at-
mospheres are quite small. They are even negligible taking into
account the large abundance differences that appear between
sets of different f -values. The mere change of atmospheric
models affects the mean abundance but not the r.m.s. scatter
as can be found in Table 3, and it is obvious that changing the
microturbulence has a greater influence on such results. Thus it
is doubtful if any other atmospheric model could significantly
reduce the abundance scatter.

Our results then indicate that it is the atomic data, in par-
ticular the oscillator strengths, that presently do not allow the
determination of the solar Fe I abundance with an accuracy
better than ∼ 0.1 dex. Based on the most reliable sets of f -
values (Oxford and Hannover data) and on the model produc-
ing the smallest overall dependence on excitation energy (TH
NLTE 1/2+) we find a value of log εFe i,� = 7.509 ± 0.075
with no dependence on line strength but a small residual gra-
dient with energy, ∆log ε/∆Elow,eV = −0.005. In view of
the differences between the Oxford and Hannover f -values it
is important to notice that this value is only 0.02 dex above
that obtained from the Hannover data alone, while it is 0.09
dex below the pure Oxford value. This apparent contradiction
is resolved by inspection of the corresponding energy depen-
dence of the respective sources. Whereas the Hannover re-
sults show no energy gradient, the Oxford data – after hav-
ing adjusted the damping constants to remove a line strength
trend – keep a strong gradient with excitation energy for which
∆log ε/∆Elow,eV = 0.034. The last three models in Fig. 9
show only a small residual energy dependence of the Fe I abun-
dances ranging from ∆log ε/∆Elow,eV = −0.0094 for the TH
NLTE5+ model to ∆log ε/∆Elow,eV = −0.0054 for the TH
NLTE1/2+ model.

The above results are to be understood as a clear report
of our failure to solve the photospheric solar Fe I abundance
problem if more than the Hannover data set were involved.
Using this data set alone with the HM LTE model, a micro-
turbulence of 1.05 km s−1 together with damping corrections
∆log C6 = 0.11 (above the Anstee & O’Mara damping con-
stants) yields log εFe i,� = 7.535± 0.070. The energy gradient
for that result is ∆log ε/∆Elow,eV = −0.008. The overall best
NLTE model (TH NLTE 1/2+) applied to the Hannover data
alone leads to log εFe i,� = 7.480± 0.072 with no dependence
on energy.

4. Conclusions

The choice of a particular model to determine the solar Fe I

line formation with a valid parametrization of the atomic colli-
sions is not possible even when including the weak solar lines.
Arguments referring only to the solar abundance problem with
or without inclusion of the Fe II lines are not conclusive since
both sets of f -values (Fe I and Fe II) are far from producing ho-
mogeneous results. One marginal result is that the models of
Paper I with their low microturbulence are no longer compet-
itive because they all display a relatively strong gradient with
excitation energy (see Fig. 9). This does no longer appear when
increasing the microturbulence from ξ = 0.85 km s−1 to 1.00
km s−1 as in our present models 5 to 9. All the TH models are
roughly compatible with meteoritic abundance. Small correc-
tions for dynamic line formation such as suggested by com-
parison with hydrodynamic results of Asplund et al. (2000) in
section 3.1.2 are of the order of −0.03, which would bring the
solar abundance to a value slightly below that of the carbona-
ceous chondrites.

The quality of individual line fits are significantly differ-
ent for the HM and TH model atmospheres only for the cores
of strong lines. In Paper I this was demonstrated for a num-



Thomas Gehren et al.: Kinetic equilibrium of iron in the solar spectrum 19

ber of lines of various excitation energies. The line center flux
reflects essentially the different temperatures in the upper pho-
tosphere with a 150 . . . 200 K difference predicting ∆F ∼ 4%
as observed. However, these differences vanish when a com-
promise is accepted for a profile fit of the inner wings (see Fig.
10) allowing the synthetic profile to fall below the observed
flux by a small amount. The evaluation of profile fits thus has
changed marginally as compared with Paper I. For the weaker
lines Figs. 4 and 6 document the independence of fit quality
from the model atmosphere if abundances and macroturbulence
velocities are adjusted accordingly.

The selection of a particular atmospheric/atomic model on
the grounds of profile synthesis of the solar Fe I flux spectrum
is therefore still somewhat ambiguous. This would be differ-
ent if the abundance determinations were of higher quality. For
differential analyses of stellar spectra it is obvious that our at-
mospheric model can be only one of the TH models because
only they allow a physically consistent change of parameters
such as Teff , log g or [Fe/H]. Since strong lines in the solar
spectrum reduce to weak or turbulence lines in stars of low
metal abundance, it is most important to install a unique recipe
for the determination of the damping parameter. This can be
done with reference to Table 3 where a good mean value for the
correction would be ∆log C6 = −0.15. We should, however,
bear in mind that this deviation from the Anstee & O’Mara
results is essentially necessary to correct the strong lines with
f -values from the Oxford group. The error introduced to differ-
ential abundance determinations in metal-poor stars thus will
have to include a systematic uncertainty of ∼ 0.04 dex due to
inconsistencies in the interpretation of the solar lines.

Current investigations of a small number of reference stars
with different iron abundances will have to show how to se-
lect a common NLTE model that fits the Fe II/Fe I ionization
equilibria of all stars.
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