Gravities of Metal-Poor Halo Dwarfs and the Age of the Universe

Andreas J. Korn and Thomas Gehren

Universitäts-Sternwarte München (USM), Scheinerstr. 1, 81679 München

Abstract. We report on the methodology of an ongoing project to determine accurate stellar parameters (T_{eff} , $\log g$, [Fe/H], [α /Fe]) for a number of metal-poor halo stars located at the turnoff (TO). With the aid of shift-free unified stellar evolutionary models we envision to derive absolute ages for these stars. Their ages will set stringent lower limits to the age of the Galaxy and the Universe.

Ingredients needed

Despite the fact that "[Fe/H] is a clock without hands" (Simon White, this conference), low-mass low-metallicity stars at the turnoff cannot be young objects. To derive their ages to within $\Delta t \sim 1-2$ Gyr we need:

- 1. high-quality spectra (R $\sim 40\,000,\,{\rm S/N}\sim 200)$
- 2. reliable effective temperatures $(\Delta T_{\rm eff} \sim 50 \,\mathrm{K})$
- 3. reliable surface gravities ($\Delta \log g \sim 0.1 \, \mathrm{dex}$)
- $1., 2. \& 3. \Rightarrow$ accurate abundances $(\Delta [X/H] \sim 0.1 dex)$ and

4. state-of-the-art evolutionary tracks respectively isochrones.

Naturally, points 2 and 3 entail the full complexity of model atmospheres (empirical vs. theoretical) and line formation (LTE vs. NLTE).

1 Spectra

We have obtained spectra of local halo TO stars down to 11.5^{th} magnitude using FOCES [1] on the Calar Alto 2.2m telescope. According to Carney et al. [2] they have photometric metallicities [m/H] between -2.2 (HD 84937) and -3.5 (G 64-12). The spectra have $R = 40\,000$ and cover the wavelength range of 3900-9000 Å. For the fainter targets the required S/N ratio is achieved by coadding individual exposures.

2 Effective Temperatures

Together with $\log g$ from Mg Ib (see Section 3), T_{eff} derived from fitting Balmer profiles yields results fully compatible with HIPPARCOS parallaxes (cf. [3]). In the framework of the convection theory by Canuto & Mazzitelli [4] a single α parameter ($\alpha_{\text{CM}} \sim 0.8$) is capable of fulfilling the constraints of both stellar structure and Balmer profile fitting (cf. Section 4). The typical uncertainty of this step is 50 K for spectra with S/N ratios of ~ 200. 2 A.J.Korn & T.Gehren

3 Gravities

Balancing FeI and FeII in LTE has been shown to yield gravities that are incompatible with HIPPARCOS for stars hotter than the Sun [3,5]. The strong line method (using pressure-broadened lines of MgIb) becomes inapplicable below $[m/H] \sim -2.4$ due to the weakening of the spectral features [5]. For the most metal-poor stars we therefore concentrate our efforts on

• the FeI/II ionization equilibrium (numerous yellow lines) and

• the Ca I/II ionization equilibrium (Ca I λ 4226 vs. Ca II $\lambda\lambda$ 8498/8542/8662) Both Fe I and Ca II are subject to strong NLTE effects which are currently

under investigation. After calibration an internal accuracy for $\log g$ of 0.05 to 0.1 dex ought to be within reach of a *differential* analysis with respect to the Sun.

Fig. 1. Evolutionary tracks by Bernkopf (priv. comm.) for [Fe/H]=-3, Y=0.23 and $[\alpha/Fe]=+0.4$. A fictitious TO star with $\Delta T_{\rm eff}=50$ K and $\Delta \log g=0.05$ is indicated.

The stellar evolutionary calculations by Bernkopf [6] include convection according to Canuto & Mazzitelli [4] and gravitational diffusion. Model atmospheres are taken into account as the surface boundary condition.

With $\Delta \log g \sim 0.05$ dex an accuracy of $\Delta t \sim 1$ Gyr will become feasible, far more accurate than what can currently be achieved by cosmological methods.

References

Pfeiffer, Frank, Baumüller, Fuhrmann & Gehren, 1998, A&AS, 130, 381 [2]
Carney, Latham, Laird & Aguilar, 1994, AJ, 107, 2240 [3] Fuhrmann, 1998, A&A, 338, 161 [4]
Canuto & Mazzitelli, 1991, ApJ, 370, 295 [5] Fuhrmann, 1998, A&A, 330, 626 [6]
Bernkopf, 1998, A&A, 332, 127