LAMOST-HiRes

LangZhong - June 20, 2006

LAMOST-HiRes
A Fiber-Fed High Resolution Echelle Spectrograph for LAMOST
Outline (1)

• Project general preconditions
 – Participants
 – Xinglong seeing conditions
 – One arm, one camera design

• Scientific preconditions
 – Stability (long co-added integration time)
 – Resolution
 – Wavelength coverage
Outline (2)

- HiRes spectrograph design
 - FOCES-like geometry – New camera
 - Spectral coverage
 - Optical properties of HiRes
- Focal plane device
 - Telescopic device
 - Pickup optics and fiber feed
- Observation strategy
- Summary and next steps
Frank GRUPP: Science

- MAFAGS-OS opacity sampling model atmosphere code
 - Spectroscopic stellar parameters of:
 - Open cluster main-sequence stars
 - Metal poor stars
 - LTE & Non-LTE element abundances
- Properties of optical fibers
 - VIRUS project at HET
 - “Fiber-noise”
General: Participants

- NAOC/Beijing: Prof. ZHAO Gang (science driver)
- USM/Munich: Prof. Thomas GEHREN (sci. driv.)
- USM/Munich: Frank GRUPP (PI, optical design)
- LAMOST/Beijing: LAMOST-Team (project structure, CCD-camera, on-site construction)
- NIAOT/Nanjing: Prof. ZHU and team (opto-mechanical design and construction, manufacturing)
General: Xinglong seeing (1)

Liu et al. 2003

- BATC survey → Seeing ofthen > 2"
- New measurements will be done (DIMM)
General: Xinglong seeing (2)

- Large seeing \rightarrow large slit losses
 \rightarrow image slicer \rightarrow reduced λ coverage

$\phi_{Ap} = 2.5''$
General: Design preconditions

- One arm, one camera design
 - Keep costs reasonable
 - FOCES as prototype
Science: Stability

- High stability of spectrum “on the CCD”
 - Allows for long (multi-exposure) integration times
 - Very demanding in mechanical & thermal stability

HD19445 $T_{\text{exp}} = 5.25\, \text{h}$

$S/N = 400$ FOCES

$V = 8.04 \, \text{mag}$
Science: Resolution & λ-coverage

- **Resolution**: 40000-70000

- **Wavelength coverage**
 - Ca H&K lines (3800 Å)
 - Mg B lines (5200 Å)
 - Balmer lines (6560, 4860, 4340, 4100 Å)
 - O triplet (7780 Å)
 -

\rightarrow 3800 – 9000 Å
HiRes: Optical layout (1)

- Based on successful FOCES
- White pupil design ("easy" to calibrate)
- Intermediate slit filters grating stray-light
- Double path symmetry
- Prism cross disperser for low stray-light
HiRes: Optical layout (2)

- Another view...
HiRes: Optical layout (3)

- Differences compared with FOCES
 - Using Chinese glasses \rightarrow new camera design
 - Higher resolution 60000 \rightarrow 70000
 - Completely different focal plane device
HiRes: Spectral coverage (1)

- Orders overlap from 3800 up to \(\approx 8300 \, \text{Å} \)
HiRes: Image on CCD

- \(d(\text{image}) \approx 54\text{mm} \)
- 4k-12\(\mu \) diagonal \(\approx 68\text{mm} \)
HiRes: Spectral coverage (2)

- BUT: Orders getting very close together in the red
- Limits spectral coverage! → Two operational modes.
HiRes: Configurations (1)

- Sliced and unsliced fiber-end
 - Wavelength coverage and range
 - Throughput
- Slitwidth
 - Resolution
 - Throughput
- Extra cross disperser
 - Wavelength coverage and range
HiRes: Configurations (2)

- Configuration changes need to be automatic
 - Manual interaction is slow and dangerous
- Selecting a configuration:
 - There is no such thing as a *universal spectrograph*
 - Observations need to be carefully planned to get best spectra possible
 - Seeing largely influences the spectrographs configuration
Focal plane device: General (1)

- There is already “something” in the LAMOST focal plane
- This something is > 6m high and 1.8m broad
- It carries 4000 fibers to LowRes spectrographs
- Shack-Hartmann sensor in the middle needed for mirror alignment
HiRes:

- Co-operates with normal LAMOST-Survey mode
- Total / partly blocks approx 7-10% of the LowRes fibers
 - Blocked fibers can be predicted
 - Footprint of pickup optics on LowRes focal plane will be minimized.

→ Survey can go on during HiRes observations
Pickup optics: Mechanical design (1)

- Movable arms get the pickup optics in place
- Shack-Hartmann sensor is kept free all the time
- Active optics can continue mirror control
Pickup optics: Mechanical design (2)
HiRes: Expected performance...

• Strongly depends on seeing conditions!!!

• A very preliminary estimate, based on the well known FOCES performance at very good seeing:
 - R=40000 S/N=100 1h → 12 mag
 - R=70000 S/N=100 1h → 11 mag

• But remember: Integration time can be very long with an opto-mechanically stable instrument... 10 hours or even longer ...
Possible observation strategy

- HiRes observations in parallel to LRS survey
 - 7-10% of LRS fibers blocked
 - Observation only if seeing is better than given threshold
 - Depending on object brightness
 - Depending on resolution

- HiRes configuration changes without manual interaction.
 - Quick changes
 - Requires (semi-)automatic alignment procedure

Only what can be done - will be done
HiRes: Summery

- HiRes basic spectrograph design ready
 - $R=70000$, $\lambda=3800-9000\text{Å}$
- Seeing conditions give strong boundary conditions to design
 - Better seeing statistics needed
 - Observations have to be carefully planned
 - Spectrograph alignment has to be (semi-) automatic
HiRes: Next steps

- Final design and manufacturing
- www.grupp-astro.de/publications/langzhong.pdf

Thank you for your time and dedication!