ADASS XIIT
ASP Conference Series, Vol. XXX, 2004
F. Ochsenbein and M. Allen eds.

LTL — The Little Template Library

Claus A. Gossl, Jan Snigula
Universitdts-Sternwarte Miinchen, Scheinerstraffie 1, D-81671 Minchen

Niv Drory
Department of Astronomy, University of Texas at Austin, Texas 78712

Abstract. The Little Template Library is an expression templates based
C++ library for array processing, image processing, FITS and ASCII /O,
and linear algebra. It is released under the GNU Public License (GPL).
Although the library is developed with application to astronomical image
and data processing in mind, it is by no means restricted to these fields
of application. In fact, it qualifies as a fully general array processing
package. Focus is laid on a high abstraction level regarding the handling
of expressions involving arrays or parts thereof and linear algebra related
operations without the usually involved negative impact on performance.
The price to pay is dependence on a compiler implementing enough of
the current ANSI C++ specification, as well as significantly higher de-
mand on resources at compile time. The LTL provides dynamic arrays of
up to 5 dimensions, sub-arrays and slicing, support for fixed size vectors
and matrices including basic linear algebra operations, expression tem-
plates based evaluation, and I/O facilities for columnar ASCII and FITS
format files. In addition it supplies utility classes for statistics, linear
and non-linear least squares fitting, and command line and configuration
file parsing. YODA (Drory 2002) and all elements of the WeCAPP re-
duction pipeline (Riffeser et al. 2001, Gossl & Riffeser 2002, 2003) were
implemented using the LTL.

1. LTL Features

1.1. Multidimensional Dynamical Arrays

The multidimensional array class MArray features creating and referencing sub-
arrays (rank preserving), slicing (rank reducing), e.g. a column of an image,
mixing sub-arrays and slices in the same indexing expression (e.g. a sub-matrix
of a slice of a cube), referencing the data of other arrays (“views”), and reference
counting for the memory chunks holding the actual data. STL-compatible iter-
ators enable interfacing with STL containers and algorithms. MArrays resolve
arbitrary complex arithmetic expressions without the creation of temporary ob-
jects by making use of expression templates (Veldhuizen 1995). All standard li-
brary math functions are supported, while user supplied functions can be added
easily. Indexing arbitrary sets of elements, the evaluation of conditional expres-

1

2 Gossl, Drory & Snigula

sions, methods for re-indexing, and index iterators are implemented. A set of
simple statistical functions (reductions, see Sect. 1.3.) as well as methods for
stream, ASCII-file, and FITS file I/O are provided.

1.2. Fixed Vector & Matrix Classes

The fixed vector and matrix classes FVector and FMatrix provide: compile time
fixed size (allows strong optimization), expression template based evaluation of
arithmetic and linear algebra expressions, referencing column and row vectors
of a matrix, vector dot product, matrix-vector and matrix-matrix dot-product.
All operations on small enough objects are automatically unrolled by template
meta-programs. In addition there are STL-compatible iterators, and methods
for Gauss-Jordan elimination, linear least squares fitting (i.e. polynomial ap-
proximation of MArrays), and nonlinear least squares fitting (i.e. Marquardt-
Levenberg algorithm).

1.3. Simple Statistical Functions

The LTL also provides some statistical functions on MArrays (and expressions).
These reductions include: boolean evaluations (allof (), noneof (), anyof(),
and count()), mean values (average, median, variance, rms, kappa-sigma clip-
ping), and others (like minimum, maximum, sum, product and histogram). All
statistical functions may ignore an arbitrary NaN value.

1.4. The Utility Classes

The utility classes provide an easy way of programming a command line or
configuration file based user interface. There are also classes for I/O formatting,
i.e. date formatting and date conversion etc.

2. Performance

The LTL is explicitly designed to have high performance (i.e. comparable to
hand optimized code) while having a high abstraction level to allow the user to
write readable and reusable code. Fig. 1 shows for a simple calculation, involving
a constant and four two dimensional arrays in single floating point precision,
that already for 16 x 16 elements arrays one line LTL performs as good as hand
optimized Code. Our fixed size vectors and matrices can overcome the worse
performance for too small sized dynamical arrays.

3. Code Examples

MArray<float,2> B = // construct as sub-array

A(Range(A.minIndex(1)+2, A.maxIndex(1)-5), Range::all());
MArray<float,1> C = A(3, Range::all1());// construct as slice
// construct from expression

A = exp(sin(100.0 * indexPos(A,2) / M_PI) *

cos(100.0 * indexPos(A,1) / M_PI));

// replace values via index list

IndexList<3> list = where(A==0); A[list] = 1;

LTL — The Little Template Library

300
250
200
150
100

Mflops

10+2 10+3 10+4 10%°

array size [bytes]

Figure 1. Performance of a standard C (light gray), a hand opti-
mized C (dark gray), and a LTL implementation using dynamical ar-
rays (black) of A = Constant x B+ C * D (A, B,C, D 2-dimensional
arrays): Mflops / array size [bytes] of a single array, GCC-3.1, SPARC
/ Solaris

// build reciprocal, but avoid division by zero
B = merge(A!=0.0, 1.0/A, 0.0)

A.setBase(-100, -100); // re-index array

// loop over indices
MArray<float,2>::IndexIterator i = A.indexBegin();
while(i != A.indexEnd())

{int x = i(1); int y = i(2); ++i;}

// write to / read from stdout / stdin

cout << A; cin >> A;

// read 3rd column from ASCII table foo
AscFile File("foo");

MArray<float,1> A = File.readFloatColumn(3);

// multiply data of FITS file with value

// of header key GAIN and write back file
FitsIn infile("filename.fits");

MArray<float, 2> A; infile >> A;

const double gain = infile.getFloat("GAIN ");
FitsOut outfile("outname.fits", infile);
outfile.addHistory("multiplied with gain");

A x= gain; outfile << A;

// declare fixed size vectors and matrices
FVector<float, 4> u, v;

4 Gossl, Drory & Snigula

FMatrix<float, 3, 4> A; FMatrix<float, 4, 4> B;
// calculate a dot product

float s = dot(u, v);

// calculate a matrix vector product
FVector<float, 3> w = dot(A, u);

// do a Gauss Jordan elimination

u = GaussJ<float, 4>::solve(B, v);

4. Installation

Retrieve the latest versions via CVS:
cvs -d :pserver:anonymous@deepthought.usm.uni-muenchen.de:
/usr/share/cvsroot login
Password: 42
cvs —-d :pserver:anonymous@deepthought.usm.uni-muenchen.de:
/usr/share/cvsroot checkout 1tl
If you want to get the latest developer branch use the option -r 1t1-1-7. Stable
releases have even subversion numbers. (Developer branches are odd.) The latest
tarballs can be retrieved from
http://www.usm.uni-muenchen.de/people/drory/1tl/index.html.

The LTL has been built successfully with GCC versions 2.95.2 to 3.3.1 (Linux
/ IA32, Mac OS X / PPC, Solaris / SPARC), ICC version 7.1 (Linux / IA32), Sun
C++ version 5.5 (Solaris / SPARC), and IBM Visual Age xIC version 6 (AIX
/ PPC, Max OS X / PPC). DEC/Compaq/HP (whatever) compiler support is
on the way. The LTL’s build system is based on GNU autoconf.

5. Prospects

We are concentrating on three issues which will be implemented next: A com-
plete documentation using Doxygen, support for large files (> 2GB) on all plat-
forms and for FITS extensions, and optimization for CPU floating point vector
units.

Acknowledgments. Our thanks are due to Arno Riffeser for extensive test-
ing.

References

Drory, N. 2003, A&A, 397, 371
Gossl C. A. & Riffeser A. 2002, A&A, 381, 1095

Gossl C. A. & Riffeser A. 2003, in APS Conf. Ser., Vol. 295, Astronomical Data
Analysis Software and Systems XII, ed. H. E. Payne, R. 1. Jedrzejewski,
& R. N. Hook (San Francisco: ASP), 229

Riffeser A. et al. 2001, A&A, 379, 362
Veldhuizen T. 1995, C++ Report, Vol. 7 No. 5, pp. 26-31

