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Summary. Analytical solutions for radiation-driven winds of hot
stars including the important finite cone angle effect (see
Pauldrach et al., 1986; Friend and Abbott, 1986) are derived
which approximate the detailed numerical solutions of the exact
wind equation of motion very well. They allow a detailed
discussion of the finite cone angle effect and provide for given line
force parameters k, a,  definite formulae for mass-loss rate M and
terminal velocity v, as function of stellar parameters.
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1. Introduction

The theory of radiation driven winds after its recent significant
improvements appears to be a very promising tool to describe the
observed winds and mass-loss of hot stars in a quantitative way.
The original concept by Castor, Abbott and Klein (1975, “CAK”)
was further developed by Abbott (1982), who provided a realistic
line list of 250000 lines contributing to the line force. Pauldrach,
Puls and Kudritzki (1986, “PPK”) and Friend and Abbott (1986,
“FA”) independently investigated the importance of the finite
cone angle effect, which modifies the wind dynamics significantly
and leads to a convincing general agreement with the obser-
vations (see also Kudritzki et al., 1987). Pauldrach (1987) dropped
the approximative treatment of metal occupation numbers and
treated for the first time the full NLTE multi level problem by
solving the rate equations for 133 ions (including electron colli-
sions and correct continuum radiative transfer) simultaneously
with radiation driven wind hydrodynamics. In this way, he
obtained a strong shift towards higher ionization stages, which at
least partially solved the long-standing problem of “superioniz-
ation” in cool winds without any extra source of ionization. Puls
(1987) extended this work further by including additonally in a
selfconsistent realistic way the important effect of overlapping
lines, which was investigated in a somewhat more simplified
manner before by Panagia and Machetto (1982) and Friend and
Castor (1983). Thus, wind models for hot stars are now available,
which treat the physics of the interaction between driving photo-
spheric photons and wind plasma in a very detailed and realistic
way. At the moment, these extensive models are being applied on
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a variety of cases: Massive stars in different evolutionary stages
(Pauldrach et al.,, 1989) and with different metallicity, Central
Stars of Planetary Nebulae (Pauldrach et al., 1988), hot sub-
dwarfs, supermassive stars etc. The computational effort for these
calculations is enormous, since, besides the detailed microphysics,
complicated and sometimes slowly convergent iteration cycles
are involved. It is therefore desirable to have practicable analyti-
cal solutions, which can be used as a first iteration step and which
are already close to the final solution. Moreover, these analytical
solutions can provide a deeper understanding of the complex
computer code results. Finally, the analytical solutions yield also
definite formulas for mass-loss rate M and terminal velocity v, as
function of the stellar parameters, which are the basic obser-
vational dynamical wind quantities. Such formulae are very
useful for the comparison with the observational data and can
also be used as input for stellar evolution codes, which have to
include the effects of mass-loss along the tracks.

The old theory by CAK allows one to derive such formulae in
a simple way (see also Abbott, 1978, 1980, 1982). For the
improved models including the finite cone angle effect no
analytical solutions have been provided yet. PPK have given
complicated formulae for M and v, which however require the
knowledge of the radial coordinate of the critical point and fail if
this value is not close to unity as in case of supergiants and
Central Stars of Planetary Nebulae. FA obtained a simple
formula for v,, as a result of a least square fit procedure to their
numerical results. This formula however neglects the influence of
d, the second line force multiplier parameter, which was introduc-
ed by Abbott (1982) to describe the back reaction of the line force
on changes of the ionization structure in the wind. As we shall
show below, this is a non-negligible effect. In addition, the
dependence of the ratio v, /v, On v (the surface escape velocity)
is not described completely by this formula. FA adopted v, /v, to
depend on v, only, whereas we will show that it depends on the
scale height of the photosphere in units of stellar radius, which is
given by the ratio of v2/v2, (v, is the isothermal sound speed).
Although this is of little importance for the practical fitting of
massive O-star observations, it has some relevance in the case of
Central Stars, where much hotter photospheric temperatures and
lower escape velocities are encountered (see Méndez et al., 1985,
1988; Kudritzki and Méndez, 1988).

The motivation for the paper therefore is to develop analytical
solutions for the velocity and density structure of radiation driven
winds, which include the finite cone angle effect. These solutions
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will provide analytical expressions for v, and M for all realistic
values of the force multiplier parameters « and 6 (0.5<a<0.75,
0.01<6<0.1) and also for the case of extended photospheres,
which are characterized by relatively large values of v2/v%.. These
formulae can be used in all cases where good first estimates are
needed, as for instance in the case of stellar evolution, obser-
vational spectroscopy, energy or momentum input onto the
Interstellar Medium or Planetary Nebulae. The structure of the
paper is as follows: In Sect. 2 the general concept is developed.
Section 3 gives as a simple first example the application on the
CAK case without finite cone angle correction. This correction is
then taken into account in Sect. 4 for thin (v?/vi.<1) and in
Sect. 5 for extended (v2/v2,, < 1) photospheres. Section 6 gives the
final cooking recipe to compute M and v,. Section 7 finally
compares with detailed numerical calculations.

2. The theory of radiation-driven winds
and our basic concept for analytical solutions

In its present status the theory of radiation driven winds treats
stationary radial symmetric one component flows ignoring vis-
cosity, heat conduction and (with some exceptions, see PPK, FA
and Friend and Mc Gregor, 1984) magnetic fields and rotation.
The equation of motion is then given by

dv 1 dp GM dv
o= TP *+g,Ta‘}1<l+M<p,v,d~,r,nE>>. ()]
r

dr p(rydr r?

All quantities have the usual meaning (see for instance PPK). gTh
is the radiative acceleration caused by Thomson scattering and
M(p, v, dv/dr, ng) is the “force multiplier” — the line force in units
of the Thomson-scattering force. This is the crucial quantity in
radiation driven winds. As shown originally by Abbott (1982),
and later by PPK, Kudritzki et al. (1987), Pauldrach (1987), Puls

(1987) a very useful parametrization of the force multiplier is

given by
) @

d - 4 d
M(p,v,—v,r,n5>=k(aEpv"'> ( T > CF(r,v,—v
dr dv/dr W(r) dr

vy, is the thermal velocity of the protons. ogp is the Thomson
scattering absorption coefficient, ng(r) the electron density (in
10! cm~3) and

W(r)=0.5(1—(1—(R,/r*"? "

the dilution factor. The parameters k, «, 4 are obtained from the
detailed NLTE calculations for all the individual lines contribu-
ting to the line force. Roughly speaking k represents the number
of lines with strengths larger than a critical value, « the slope of
the line strength distribution function and J the change in
ionization due to changes in the ionization and recombination
rate. We have to note here that in recent work by Pauldrach
(1987) the parameter triple (k, a, J) is not held fixed anymore in
the entire wind, but is allowed to vary instead. However, it is
always possible to define depth independent mean values, which
represent the final solution very well (see for instance Puls, 1987).
Thus, we regard in the following k, o, § as depth independent. The
finite cone angle correction factor CF (see PPK, FA or also CAK)

is given by

cF=_"! x2<1 (1 Lok m)
Tat+l11-h x? x?

l_dmv
h dinx

4

where x=r/R,, is the dimensionless radial coordinate.

We now restrict ourselves to the case of an isothermal wind,
which is a good approximation for cool radiation driven winds
(see PPK). Then we have p=1v?p with v,=const, which together
with M =4mnr?pv — the equation of mass conservation — yields the
well known non-linear implicit differential equation for the
velocity field of radiation driven winds (see CAK, PPK, FA).

4p? 2
F(x9y’v)=cf(x9y9v)ya_A I_Tx -y 1—;3 =0. (5)

Uesc

Here the following abbreviations are used: y is related to the
velocity gradient and defined as

=rt do_ R, x% dv (6)
y= dr- ¥ dx

ves. 18 the photospheric escape velocity reduced by the acceler-
ating contribution of Thomson scattering

vesc=(2 g(l _r) R*)l/z’ (7)

where I' is given by I'=L/L; the ratio of stellar to Eddington
luminosity. The constant A is related to v, by

A=v% R, /2. 8)

The function f is the product of finite cone angle correction factor
CF and the o-dependent ionization correction

)
fx, y, 0,0, 6):(%) CF(x, y, v, a). )

It is assumed that ng~p~(x?v)”! in this definition of f. The
constant C is given by

(o)
k = .
Oy M

Besides the numerical solution of Eq. (5), the determination of
C - the eigenvalue of the problem — is crucial. It is usually
determined from the singularity of Eq. (5) at its critical point x,
which is found by the singularity condition

Lo
c=""t
4nc

(10)

oF

5l =0 (1)

x=xc

and by the regularity condition
<5F 3F &v
—_ +.__. —_—
dx v ox
Equations (5), (11) and (12) together with the constraint on the
optical depth integral

[% pr)oedr=2/3

yield x, v., y. and C at the critical point. Then, v(x) is obtained by
integrating numerically away from the critical point (inward and
outward) along the appropriate solution branches of Eq. (5).

=0.

X=Xc

(12)
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Our approximate analytical treatment is different. It uses an
approximation for the function f(x, y, v, «, 6), which follows from
the results obtained by PPK, who have found that the assump-
tion h<1 (i.e. (v/r)/(dv/dr) < 1) is a good first iteration step for the
function CF. Moreover, PPK have found that

1\#
v(x)zvco<1——> , for x>x, (13)
X
is an excellent approximation for the correct numerical solution
of the problem. Typical values for i are between 0.7 and 1.0.
According to Eq. (4) we obtain for A in this case
x—1

In this approximation CF becomes a function of x, a, f§ only:

C X = (1 <1 > hx ) 1>
F( , O, B)___.ll_ﬁ — —_t ( ’ﬂ)__ .

Figure 1 shows the behaviour of CF for different values of « and S.
(Note that h—0 corresponds formally to f— o0).

We sce that differences of § between 0.5 and 1.0 do not have
extreme influence on CF. Even the case = oo (h=0)is not too far
from the other curves, in particular if x is close to unity. Thus, we
conclude that CF(x, «, ) asin Eq. (15) with f~ 1.0 is a reasonable
approximation for CF.

We now assume for a moment that J is equal to zero. Then we
have according to Eq. (9)

S, y,0,2,0)=CF (x, a, B)=f(x, a, B) (16)

which means that f'is a function of x only. From Fig. 1 and Eq.
(15) we realize that f(x, a, B) is monotonically increasing from
1 <x<2(f+1) (a discussion of the functional behaviour of CF is
given in the Appendix). This has important consequences for the
solution of Eq. (5). At a given depth x> x_ (where v?> v2, see
PPK) Eq. (5) reduces to a simple transcendental algebraic equa-
tion for y. The solution y, of this equation can be illustrated
graphically as the intersection of C f(x, o, f) y* with the linear
curve A(1—4xv2/vk )+ y, as demonstrated in Fig. 2. (Note that

CF(u,a,3)

0s F a=05 .

PO P S S |
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Fig. 1. The finite cone angle correction factor CF as function of recipro-
cal radius u=1/x for different values of « and g

207
X>X¢ X = X
Asy Asy
CHx)y® |
|
l
| ! Chixc)y®
: |
A ! A :
! |
| |
| y { y
Yo Ye

Fig. 2. The algebraic solution y, of Eq. (5) as the intersection of Cf(x)y*
and A+y for a given x> x, and for x=x,

the larger of the two intersection values is the appropriate one for
x>x.. Note also that normally 4v2 x/v% <1 for the region of
significant wind acceleration.) If one approaches x, from x> x,,
then f(x, a, f) becomes smaller because of its monotonic behav-
iour in x. Thus, there must exist a point where 4+ y does not
intersect but becomes tangent to Cfy* (see Fig. 2b). This is just the
critical point, since according to Eq. (11) it is defined by

d

4 Cf (x, a, 8) y* =—(A(1 =02 /v2. x)+ y(1 —v2/v?)) 2 1 (17)
dy y

d
which is just the condition that at x = x, the slope of C f y*is equal
to the slope of the linear curve 4+ y. (Note that this monotonic
behaviour of f will not change if § is nonzero. We will show that
(ng/W)? is only very slowly decreasing with increasing x).

Figure 2 contains the basic concept of our simplified analyti-
cal approach: In the following sections we will show that the
intersection yy(x) at every depth x > x_ can be approximated as an
explicitly known function of x. This means that we can replace the
implicit non-linear differential equation (5) by the simple explicite
equation

v 2 1

dx R, x*

Yo (%), (18)

which is obtained from the definition of y, namely Eq. (6). The
velocity field is then given by the integral

2 (%1 .
)=l +— | —yo(x)dx (19a)
Ry J,. x
or with the substitution
u=—
X
2 (v
v2(u) =02 +— j Vo (u) du. (19b)
R, J.

In a first step we will demonstrate the principles of this method for
the simple case, when the approximations by CAK are used.

3. The simplest case: neglect of finite cone angle effects

The case f(x,a, f,0)=1 corresponds to the radial streaming
approximation by CAK, which neglects for the interaction be-
tween accelerating photons and wind plasma the photospheric
finite cone angle, out of which the photons are streaming.
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In a first step we discuss the critical point. From the singular-
ity condition (Eq. 11) follows
2

=1——

a—1

Cay?
The combination of this expression with Eq. (5) yields the
eigenvalue C

1— 2/,2 .
S LN (20)

o

and the velocity gradient y,

a  1—4v2x vk,

- 21
V=1 1—v2/v? @
The regularity condition (Eq. 12) yields

v [(1—4v2 x/v2, )2 a \?
4x2= = = — . 22
e v} < 1—v2/v? 1—«a @

Now we take into account that according to CAK the coordinate
x, of the sonic point is close to unity (see also PPK). That means
v2/v’ <1 for x>1. Moreover, we realize that normally
4v2x/v%, <1 for the accelerating part of the wind. From Egs. (5)
and (21) we then conclude
o
Yo%) =y =1 A for x>x, (23)
—a
That means that the intersection y, of Fig. 2 must be constant at

all x, because f (x, «, f) is constant. With the definition of 4 (Eq. 8)
the integral of Eq. (19) then yields

1 1
vz(x)=_i vezsc(__—>+v52’
11—« X

s X

(24)

which is the well known solution of CAK for x > x,, which leads to
o
UZO =T Ugsc' (25)
l—a

Within these approximations we can also obtain the radius x, of
the critical point and the mass-loss rate M. From Eq. (24) we have

o 1
2 A~ 2
U = Vesc 1—— >
l—a X

which yields together with Eq. (22)
.=15.
Equations (10), (19), (20) and (23) yield
l—a

. = 4
Mcax = <£> " otk”"(
4nc gy GM, (1-T)

This expression for the mass-loss rate is identical with CAK,
although the way was derived is different. The same holds for Eq.
(25), which describes the dependence of the terminal velocity on
the photospheric surface velocity. The value for the critical point
(Eq. 26) reproduces well the results of the detailed numerical
calculations (see, for instance, PPK).

(26)

)(l—a)/oc Le=, (27)

4. Finite cone angle effects: the case
of geometrically very thin photopheres

Now we allow the function f'(x, «, f, d) to vary as described by Eq.
(9) and (15). This has two important effects: First y,(x) increases as

function of x, as sketched in Fig. 2. This means that the radiative
line acceleration of the flow increases strongly due to the fact that
the radiation field becomes more and more radially peaked, when
going outward. It is clear that this must change the wind
dynamics significantly relative to the CAK case. The second effect
is also caused by the variation of f and y, as function of x and
concerns the radial coordinate x, of the critical point. In the CAK
case the real value of x, is not important for M and »(x), since f
and therefore y, do not depend on x. In the finite cone angle case,
however, the value of x, is crucial, since the values of f at x,
determines the dynamics. We will show in the next section that
the value of x, is an monotonically increasing function of v?/v’.
(Note that v?/v2.= Ar/R,, where Ar is the photospheric pressure
scale height.) Thus, x_ is an increasing function of the geometrical
photospheric extension, which is-a very reasonable result. For
v2/v%, <3103, x, comes close to unity (see next section or the
numerical results by PPK). We will discuss this simpler case first
and adopt for the rest of this section that x,x 1.

4.1. Frozen in ionization: the case 6 =0

This case has been studied numerically by FA. Although it is
somewhat unrealistic, it is the easier first step to include the finite
cone angle effect. The function f'is then given by Eq. (16) or (15)
and Eq. (17) applied at x.~1 yields

Cf(l,a B)ayy (D=1 (28)

Again we have adopted that v2/v? < 1. On the other hand, we have
from the equation of motion (Eq. 5)

Cf(1, 0, B) yo(1)=A+yo(1)

(see also Fig. 2). The combination of both equations yields

(29)

o
yoll)=1— 4
—o

1 1< o >“" -
C= - — AlTe
f(o, p)a\1—a

Note that y, at the critical point is the same as in the CAK case.
However, x, is now close to unity contrary to 1.5 in the CAK case.
Together with Eq. (10) this gives already the mass-loss rate

(30)

M=f(1,a B)"* Mcax, (31)
where M, is given by Eq. (27). Note that
1
Lo f)=—0u 32
S, B) | (32)

Therefore, the mass-loss rate is smaller than in the simplified
CAK-case, which just simply reflects that due to the finite cone
angle of the photospheric disk the accelerating line force is smaller
in the region around the critical point.

To calculate the velocity field according to Eq. (19) we need an
estimate for yo(x) at x> x.~ | from the equation of motion (Eq. 5).
For this purpose we determine first the value y,, where the slope
of Cf(x,a, f)y* is equal to unity, i.e. where Cf)* turns over to
intersect y+ A4 at y, (see Fig. 2). Because of d/dy(Cfy")=Cfays ™!
=1, we have

S, ﬁ)>m_a Ly (33)

Vo= (Cf(x, 2, B)a)”"“‘(W 1-a
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Now we expand Cfy* to second order around y, to determine the
intersection yq(x):

1 1
Cf(x,a By*=Cf(x,0a, ﬂ)y;',+y—yp+;-(oc—1)5 =y

p

(In this expansion Cfay:™'=1 was taken into account).
At the intersection of Cfy* with y+ A, which defines y,(x) we
have

1 1
yo+A=ny§+yo—y,,+y—(a— I)E(yo—yp)z,

p

which yields

2y,
1—a

1/2
yo(x)=yp+( (ny:—A—yp))-

Inserting Eq. (33) and (30) we obtain after some calculation
o

.Vo(x) =1_ AfN(x’ a, B)”l o
-

(C-Gaem) )

The function fy is the finite cone angle function now normalized at
x.=1.
fN(xs a, ﬂ) =f(x’ a, B)Zf(lv a, ﬂ) (35)

Equation (34) for y(x) (together with Eq. 8) now allows one to
formulate the integral for the velocity according to Eq. (19)

(34)

1—a

2 1 1/1-a 1/2
Z(u, o, f)=/fn(u, o, /3)‘“““<1+<;<1—<—) )) ) (36)
N

The similarity to the CAK case (Eq. 24) is striking. Since v2 <v2,
the main difference lies in the integral. In the CAK case we have
Z(u, o, f)=1, because of f (u, a, f)= 1. In the finite cone angle case,
however, Z(u, o, f) has the following properties:

(i) Z(u, o, p) increases monotonically from u=1 until

u=1/(2(1 + B)), since fy increases in this interval.

o 1
UZ(u) = Ug +— vezsc j Z(u’ a, ﬁ) du

Z(1,0, p)=1

: () )
Z(I_‘_—ﬁ,a,ﬂ)=(1+a) + ; - m
Z(—l—, a,ﬂ)z(l+a)(1+{)

21+p)
2 1 1/1-a 1 1/2
X(“(;<“(m> m)) )

(37a)

1o 1
T 81—aBB+1)

(ii) Z(u, o, ) decreases from u=1/(2(1+ B)) until u=0. We have

Z0,a,p)=2Z <L o, B). (37b)

1+8

(see also the discussion in the Appendix).

209

Typical examples for Z(u, o, f) are plotted in Fig. 3. It is
evident that Z becomes much larger than unity with decreasing
reciprocal radius u=1/x. Therefore, much higher velocities are
obtained than in the CAK case. Physically, Z > 1 reflects the fact
that M is smaller than in the CAK case. Thus, the constant C in
the equation of motion (Eq. 5) is larger in the finite cone angle
case, because the radiative acceleration is the radiative force
divided by the lower finite cone angle density. The integral

o, B)= [y Z(u, o, B) du (38)

then describes, how much the terminal velocity is increased in the
finite cone angle case:

v =0 I, B

(o

(39)

is given by Eq. (25)). Table 1 gives the results of the
numerical integration of Eq. (38).

We see that I(x, ) depends strongly on a, whereas the
influence of B, in particular for the more realistic domain of
0.7<p<1.0, is rather small, as was already to be expected from
Fig. 3. The least square fit procedure of FA to their numerical
results suggests that I(a, ) ~ «/(1 —a). Figure 4 shows that this is a
good approximation, in particular for = 1. From Fig. 6 for the
case 6 =0 we conclude in addition that v /v, agrees well with the
values given by FA (their Fig.8, high v..). A more detailed
analytical approximation of Z(u, o, f) and I(«, ) will be given
below together with detailed comparisons with numerical calcu-
lations.

4.2. The role of &

As mentioned above, the factor (ng/ W)’ in the force multiplier
(see Eq. (2)) takes into account the changes of ionization when
going outward in the wind. We now investigate the influence of

20 b «=0.7,B=05 i
= «=0.7,3=1.0

5

)

N

10

" {

0.8 06 0.4 0.2

Fig. 3. The function Z(u, o, ) for different parameters « and f
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Table 1. The integral I(a, f)

o
B 0.5 0.6 0.7

0.5 5.55 8.21 15.60
0.7 5.22 7.54 13.79
1.0 4.96 7.05 12.51
o0 4.34 591 9.82

this factor on the wind dynamics. For this purpose we have to
approximate the run ng(x) of electron density in the wind. This is
done by an approximation for the velocity field, which is similar
as Eq. (13) but avoids the singularity at x=1 for ng~ 1/(x?v):

(%)= 0,((1=01/0,,) (1 = 1/xY +0,/v,,). (40)

Using the mass conservation, we obtain then

] -0
<';—V> —g(u, 5, ﬁ)=A<:—2<u—u)ﬂ+:-;)<1—(1—u2)“2))

A=( M 2 1+ Yy,
4nR2v, my 1+4Yy,
(for definition of Iy, Y., my see PPK Eq. (27)).

Because of the limited range of § between 0.0 and 0.1 g(u, J, )

can be approximated in a much simpler way as demonstrated by
Fig. 5:

g(u, 3, B)~A2%(q(d, fyu® +1)

é
x 107! cm3> 41)

46, p)=22.5—1, p=2
=751, p=1
=40°—1, p=07
=25—1, p=05
=1.18—1, B=025 (42)

For reason of simplicity we will use for the rest of this paper Eq.
(42) for g(u, 6, B). The force multiplier function f then becomes

Sf(x, a, B, 0)=CF(x, a, f)g(x, 3, ). 43)
The same procedure as in Sect. 1, then yields
1 1/ a 17
C= - Ale (44)
f(laaaﬂaé)a l—a
for the eigenvalue C. For the velocity we obtain
o 1
02 (u) =v? +T— vfscj Z(u, a, B, 6) du (45a)
—a .

Z(ua a, ﬂ’ 6) =fN(u’ a, ﬂ’ 5)1“ -

2 1 1/1-a 1/2
X<1+<&<1_</N(u,a,ﬂ,5)) )) >(45b)

fN(ua a, B7 5) =f(u’ o, ﬂ’ 6)/f(1’ a, ﬂ’ 5) (450)

The effects of 6 on the terminal velocity v,, are demonstrated in
Fig. 6, where the square root of

1
I(a, B, 6)=J~ Z(u, o, f, ) du (46)

] ] !
0.5 06 07 o

Fig. 4. The integral I(a, §) (fully drawn) compared with I(a, §)=1(0.5, B)
a/(1 —a) (dashed)

I L 1 1 | 1 1 1 i

0.8 05 02 U

Fig. 5. The function g(u, d, B)/A for v,/v,, =0.05 and 6=0.1 and different
values of B (fully drawn) compared with the approximation of Eq. (42)
(dotted)

multiplied by a/(1 —a) is plotted. (note that we normally have
v, <V,). We see that an increase of & decreases the terminal
velocity significantly. This was to be expected, since (ng/ W) is
decreasing with increasing x. This means that the increase of the
line force due to the finite cone angle effect is damped partially by
the change of the ionization structure. Thus, both parameters a
and 6 are important for the terminal velocity.

Adopting v, X v,..(0/1 —2)/2I(a, B, 5)}/* we obtain from Egs.
(10), (41), (44) the mass-loss rate for =0

. 14g\Y*"2 |
M =(DI(a, B, 0)~ ”2)"’““’<1—+3) Mi°

12
=il+l"'° Yoe | <1—a> : *10" 1 cm3.
my 14+4Yy, 4nRZv. \ «o

(47)

Table 2 shows the influence of 6 on the mass-loss rate for
typical O-stars and a Central Star (k=0.1, a=0.7, f=1.0 were
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chosen). Obviously, an increase of é from 0.0 to 0.1 can increase
the mass-loss rate up to 50%. While this effect might be only
marginally observable, it is clearly of importance if radiation
driven wind mass-loss rates are incorporated into stellar evol-
ution codes, where changes of M of that order have significant
effects.

4.3. Simple analytical approximations

Although the integrals in Egs. (45) and (46) can be easily evaluated
numerically, we give in this subsection a simple approximation of
Z(u, a, B, 6), which allows the analytical calculation of I(a, S, §). In
this way a direct formula for v /v, can be given.

As shown in Appendix 1, a sufficient accurate approximation
for CF'/1 % s

1
CFu,o, )V 2 1+bju—bu?, 0<u<——

1+8
xag—au, : <ux<l (48)
1+8
1 a 1 1 o B+1
TP T

_1 1 1/1-a ) _1+ﬁ 1 1/1-a
“07(””‘(@) )”“T(“(m) )

On the other hand, because of (6, f)u? < 1 we can approximate

1
g(u, 6, ﬂ)'“'“zmz")””(1+—l_aqu2>. 49)

Thus, the first factor in Eq. (45b) for Z(u, a, f, 5) can be given in a
simple form. We now still need an expansion of the square root. In
the Appendix and Fig. 17 it is demonstrated that this is a rapidly
increasing function with u, which can be approximated by

) : 11 -a\ \ 1/2
F(u,a,l?,5)=<;<l_<fN(14,a—,[3,5)> >>

zFO(aa B’ 6)(1 _u7(1 —u+u9))

2 1 1/1-a 1/2
f(O-Gaera) )
a N0, o, B, 0)

This means that in total Z(u, «, §, ) can be approximated by

(50)

1
Z(u, a, B, 6):Zo(a0—a1u)( 1 +1——qu2>
—u

F
><<1+—0(u8—u7— )
Fo+1 ﬂ

~Zo(1+bu—b,u?) < +——qu)

FO
X | 1+——wl—u"—u'% |,0<u
Fo+1 1+B

AL
Zo(a’ ﬁ’ 6)=Z(07 a, ﬂ’ 6)=<m> (1 +F0).

(51)

For the approximation of the integral I(a, 8, 6) (Eq. 46) the terms
involving F/(F,+ 1) give only a 5% contribution, which is of the
order of the accuracy of the approximation for Z(u, a, f, 9) itself.

211

Voo /Vesc

| —
05 0.6 07 «

Fig. 6. The effect of § on v, /v, computed according to Eq. (46). The
dashed curves show the corresponding approximation given by Eq. (52).
(B=1 was chosen)

We thus neglect these terms for simplicity and obtain

I(a,ﬁ,mzo(ao((l_-‘_)+L€(1_<L)’))
1+p 1—a3 1+
1 1V 1g 1 \*
‘“1(5("(?:3) +T—?Z<1‘(ﬂ_ﬁ> ))
ritgon (i) ity
1+8 2\1+8/) "41—a \1+8
RGN Ey
A3\1+8 1—a5\1+p
11 1\3
31_——(1<1+a> )

Figure 6 shows that this approximation is sufficiently accurate.

(52)

5. Finite cone angle effects of winds
above geometrically extended photospheres

We now consider the fact that the coordinate x_ of the critical
point increases with v2/v% =A4r/R,. Figure 7 shows the corre-
sponding results of fully numerical finite cone angle calculations
carried out with «=0.709, 6 =0.05 for Central Stars of PN (see
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Table 2. Influence of 6 on M

Typical O5V-star: T.;=45000 K,
log g=4.0, R/Ry =12

B M in 107% My /yr
0.0 2.07
0.05 2.33
0.1 2.73

Typical central star: T ,=45000 K,
logg=42, R/R5=10

B M in 1078 Mg/yr
0.0 1.33
005 161
010 208
T 1 T
Xc
20 | 4
r .///// 4
—’.”’.
_"«r’s’“:‘.
_e -
0 F _
1 1 |
-30 log (Vs /Vesc ) 20

Fig. 7. The coordinate x, of the critical point as function of log(v?/vZ,) for
detailed numerical finite cone angle calculations for Central Stars of PN
(see text). The dashed curve corresponds to the approximation given by
Eq. (58)

Paper V. This effect has also been mentioned in the paper by FA).
In the first step, we want to derive the numerically observed
correlation of Fig. 7 as an approximative result of the singularity
condition (Eq. 11), the regularity condition (Eq. 12) and the
equation of motion (Eq. 5). For the function f(x, a, 8, 6) Eq. (43)
and (15) are used. The procedure is analogous to Sect. 3 for the
casef= 1. The singularity condition yields again the same result as
Eq. (21), however Eq. (20) has to be replaced by

2 /4,2
1 —vZ/v? i-a

~ a9 3

The regularity condition yields

1_4vs2xc/v:sc f,+4vsz vzscvsz< o >2<1_4Us2xc/ue2sc 2
1—a £k, x2vt \1—a 1—v2/v? )
(54a)
(Note that (54a) and (22) are identical, if d/dx(f)=f"=0).
Assuming again v2/v2 <1 and 4v? x./vZ. <1 we obtain
1 f 402 ( o >2ufscvsz

e .
1—a [ 02 1—a/) x2v?*

€sc

(54b)

Equation (54b) involves two problems. The presence of f'/f
modifies it relative to the CAK-case. However, since f’/f can be
given as a function of x, we can take this into account. In addition,
an estimate for v, is again needed. However, since now the finite
cone correction factor leads to the varying function f (x, «, 8, d) in
the equation of motion (Eq. 5), Eq. (23) does not hold anymore,
since yy(x) is not constant. Thus, the estimate of v, has to be
modified relative to the CAK-case: Since f(x, «, B, §) is mono-
tonically decreasing in the interval 1+f>x>1, a solution of
Eq. (5) can only be found inward of the critical point x,, if x, is
already close enough to the sonic point x, so that the decrease in
f(x, o, B, 8) is compensated by the decrease of the slope of 4+ y (1
—v2/v?) (see Fig. 8). Thus, x, in the finite cone angle case must be
much closer to x, and to x=1 as in the CAK case (see also PPK).

[ X = Xe X>X¢
As+y
Cf(x)y®
Cfixc)y®
As i
1
; | | "
! : A*)’“-Tz)
I I
1 [} |
A : A : |
l | |
1 y i 1 y
Ye Yo Ye

Fig. 8. Sketch of the solution y,(x) for x < x, in the finite cone angle case

0.8 094 U 0.94 0.88

Fig. 9. yo/y. as function of reciprocal radius u=1/x for two numerical
finite cone wind models of Central Stars of Planetary Nebulae (left:
M/M5=0.565, T.;=60000K, log L/Lg=3.53; right: M/M=0.546,
T.¢s=80000K, log L/L=2.99). The sonic u, and the critical point u, are
indicated
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Generally, all the wind models we have calculated so far show a
roughly linear slope of y, versus the reciprocal radius u=1/x
(Fig. 9 shows the behaviour of y,(u) for two examples. Figure 10
sketches the general behaviour of y,(u) in the CAK and the finite
cone angle case). Using Eq. (19b) (and v2/v? < 1) this leads to

2 us 1 2 2
vf:—j ydu= Ye (1—%—).
Ry J .. R, x? y'(x,) Ve

As shown in Appendix 2, a sufficient accurate approximation of
Eq. (55) is

U= vs((p(vs/vesc)/(l - a))l/z

O (0010 = 3. (002026 okl

(53)

(55a)

Figure 11 shows that this is a sufficiently good approximation as
long as v,/v,,, and, consequently, x_ are not too small so that the
approximations for the velocity field (Eq. (13) and/or Eq. (40)),
which enter into our algorithm, do not become totally invalid. In
these cases (typical objects are marked by crosses in Fig. 11) it is
not possible to determine x, and v, accurately enough by our
method. However, fortunately, just in these cases x, approaches a
constant value of 1.03, as we have found by the fully correct
numerical treatment of the problem. In addition, v? becomes very
small compared with v so that the accuracy of v, is not
important for the calculation of v, (see Eq. (19) or (36)). Thus, we
adopt a minimum value of x™"=1.03 and develop a formula for
the more extended atmosphere with x> 1.03. For this purpose
we insert Eq. (55a) into (54b) and obtain

vzsc az(l - a)

o =xf'/f. (56)
y A
finite cone
angle
Ye
I
I
i
I
|
I
I
I
by
CAK finite | || —=onic
Uc cone |
™ Uc :
I
I
I
1 1 -
0.0 1.0 u=1/x

Fig. 10. The general behaviour of y,(u) in the finite cone angle and in the
CAK case

15 .
.
S + &
o +
2
/
+*
10 + .’ -
. o o/
ry L]
4 L 1 1 1 L 1 L | )
0.8 1.0 12 1.4 1.6
-log(vs /Vesc)

Fig. 11. log ¢ as function of log v/v,,. (dots: results of detailed numerical
calculations, crosses: see text, fully drawn: the approximation given by
Eq. (55a))

Since the right hand side of Eq. (56) is a known function, which is
fairly well approximated by (see Fig. 12)

x2f'/f=a35(a+1)1.46/x3 —2q./x.. (57)

X, can be determined by an approximate use of Cardan’s formula
as function of vZ /v?, « and &

2
x.= @33+ 1) x 1.46/0)”3—§qc/o, for x,>1.03

vzsc az(l - (X)
a;hvsz PR (58a)
where q.(, B.) is defined in the same way as q in Eq. (42).
However, since close to the critical point the exponent describing
the velocity field in Eq. (40) tends to change drastically, an extra
value f, has to be chosen to calculate g, at the critical point. These
values are given in Table 3.

If formula (58a) yields values for x. smaller than 1.03, we

adopt
x.=1.03. (58b)

Figure 7 shows this approximation to be valid for not too large x,
as long as the previous assumption

407 x./vd. <1
is not violated.
With these expressions for x, and v, we have now boundary

values for the integral of Eq. (19). In the next step we calculate
Yo(x) for x> x, in the same way as in Sect. 4. The result is

yo(u)zZ(u, a, B’ 57 uc) =fN(“’ o, B’ 6’ uc)lll o

2 1 1/1-a 1/2
X<l+<;<1_<fN(uaaaﬁ’5auc)> >> )

f(u, 2, B, 6)
S(ug o, B, 8)

where f'is given by Eq. (43). Using the same approximations for
f(u, o, B, 6) and the square root in Eq. (59) as in Sect. 4 we can then

fN(u’ , B? 5’ uc)= (59)
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N
—
S

03

log (x*CF'/CF)

-0.2

-05

-0.7 I 1 L I
0.1 0.2 03 logx

Fig. 12. Logarithm of the function x*CF'/CF for B=1.0, a=0.7 (dots)

and f=1.0,x=0.5 (crosses). The approximation of Eq. (57) is also shown
(fully drawn)

Table 3. j. as function of « and o

0.01 0<.03< 0<.055< 0<.085< 6<.095< o
0.7<a 2.0 20 1.0 1.0 0.7
0.7z« 20 1.0 0.7 0.5 0.25

compute the velocity field according to Eq. (19).
(vw)z_ o <1—a< vc>2
Vesc —l_a a Vese
1/1+8 1
+Zo<j (1+b,u—b2u2)<l+—qu2>du
0 11—«
uc 1
+J (ao—alu)<1+————qu2>du>>
1/1+8 11—«
B (1~a< vc>2
T1-a\ « Uesc
1 1 g 1 \3
zof ao( e— b — = —
" °<”°(“ 15 1—a3<“ <1+/3> >>
1 q
p— C +___
“‘<2< ( ﬁ>> —a4< I+ >>)
rpolag) (i) )
1+ N1+8/) \6 201—a\1+8
Sialieg) )-
1—a\15p

n ———I(oc B,o,u;)
1
Zo(a,ﬁ,a,uc)=o<1+<;<1_5> )

Gla, B, 0, u)=(ao—a,u;)” (qui + 1)1 (60)
The mass-loss rate is given by
M=(DI(a, B, 3, u) ™ 2P ACF (u)) (1 +qui)' " MEZc".  (61)

Formulae (60) and (61) now allow one to compute directly v, and
M, if the stellar parameters M, R,,, L are specified and the force

multiplier parameters k, «, 6 are known. f is a free parameter,
which was introduced to describe the influence of the velocity
gradient on the finite cone angle function f for layers clearly
above the critical point. The influence of this parameter, which
when compared with detailed numerical solutions of the radi-
ation driven wind equations lies between 0.7 and 1.0 (see also
PPK), on v, and M is small. We, therefore, adopt f=1.0 in the
following comparison with numerical results.

6. The cooking recipe for M and v,

In the foregoing sections we have developed an approximate
algorithm to solve the equation of motion and the eigenvalue
problem of radiation driven winds including the finite cone angle
effect. Since this was done in several more or less complicated
steps, we summarize in this section the basic steps for those who
simply want to apply the approximate formulae for M and v,. Six
parameters have to be specified: Stellar luminosity L, stellar mass
M, and effective temperature T, plus the force multiplier
parameters k, o, 0. For the stellar parameters other equivalent
parameters (T, log g, R,, for instance) can be used as well. For
the force multiplier parameters either the old rather inaccurate
values by Pauldrach et al. (1986) or Kudritzki et al. (1987) or
Abbott (1982) can be used for rough estimates. The very recent
work described in Sect. 1, which combines full multilevel NLTE
of all the 133 ions driving the wind with the radiation driven wind
hydrodynamics, yields much better k, «, d. For stars like { Puppis
values can be found in Pauldrach (1987) and Puls (1987). For
Central Stars of Planetary Nebulae k, «, 6 values are given by
Pauldrach et al. (1988). For galactic O-stars evolving with 40, 60,
80 and 120 M away from the ZAMS new force multiplier
parameters have also been calculated very recently (Pauldrach
et al., 1989). In future work, we will continue to calculate data for
other groups of stars.

The first step is to calculate x, the coordinate of the critical
point and the critical velocity v, using Eq. (55a) and (58a) or (58b)
and the f values of Table 3. (Note that v, as defined by Eq. (7)
includes the factor (1 —T'), see below). Now we apply Eq. (60) for
=1 to calculate v, /v.., which yields

vl o«
E=’l—_—71‘ I(a, 1, 5, uc)
T—oa/ v, \? 1 1 1
I, 1,8, u) = ( > +Zo(a0<uc—-+~q——<uf——>>
o\ Vgse 2 1—-a3 8

(oDt
2 4 1—a4 16

dla(Llayta) g
2 81—a\6 80 1—« 24 1—«q
Zy, G, u,, q are defined as follows
u=x.',9g=75-1
1 \Ma-=a 1\ M-
a0=2—<m> ,a1=2<1—(m> ) (63)
2 1 12
aea(1+(3(1-¢))")
o G
G=(ap—ayu)” qui+ 1"~ (64)
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I(o, 1,9, u;) as defined by Eq. (62) can then also be used to

calculate the mass-loss rate M

M = (DI(a, 1, 8, u)~ 2P =(CF(u,, a, 1)
X (14 qud)'’™= %) MG (65)

The CAK mass-loss rate M, is given by Eq. (27). Note that v,,
in this Eq. is the thermal velocity of the protons and that g and I’
are calculated by

141, Y
0p=0398 — "¢
1+4Y
L/L
I=7.6610"%0, /O, (65)
M/M,

where Iy, is the number of electrons provided per helium nucleus
(Iye=2 for O-stars) and Y= Ny./Ny. In the same way the sound
velocity v, which is needed for the determination of x, (Eq. 55a) is
calculated

241+ 1) Y T \ V2

v,=9.085 103 <(—")ff ) (67)
1+4Y

The constant D is given by Eq. (47) and CF (u,, «, 1), the finite cone

angle correction factor for §=1 at the critical point, is given by

1
— (11—t
a+1/1c( (1=29""%

1
/lc=ucz(2———>.
uC

(Note that CF(1/2,a,1)=1.)

Equations (62) and (64) allow the easy computation of v, and
M as function of stellar parameters for given force multiplier
parameters k, a, 6. A sample of small FORTRAN subroutines for
that purpose can be provided upon request.

CF(u,a,1)=

(68)

7. Comparison with numerical solutions of the wind equations

The accuracy of our approximative solutions has to be tested by
comparison with the numerical integration of the wind equations
(for a description of the numerical procedure see PPK). We will
do this for two cases: Massive O-stars and Central Stars of PN. As
approximative formulae for v, and M we use Egs. (62) and (64) as
described in Sect. 6.

7.1. Massive O-stars

A comprehensive grid of wind models along evolutionary tracks
has been computed by Kudritzki et al. (1987). A comparison of
these computations with Eq. (62) for v, as function of v is given
in Fig. 13. Figure 14 shows the corresponding comparison of M
as function of luminosity (compare also with Figs.3 and 5 of
Kudritzki et al.). We see that the agreement is within 5% for v,
and within 10% for M. The approximative values for M are
systematically a little too small. This could be overcome by
choosing B~ 1.5 for the computation of M. Physically, this
represents the well known fact that the velocity field around the
critical point is represented by a different exponent § than the
layers above the critical point. However, in view of the small
percentage of the discrepancies we regard Eq. (62) and (63) as
accurate enough.

logM + 6
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Fig. 13. v, as function of v, for massive O-stars. Open circles and
squares represent detailed numerical calculations for the Galaxy («=0.64,
6=0.07) and the SMC («=0.58, 6=0.104) (see Kudritzki et al., 1987).
Filled circles and squares represent the results obtained with the approxi-
mation of Eq. (62). The dashed and dashed-dotted curves correspond to
the formula by Friend and Abbott (1986)

.0

0.0

-05

Fig. 14. M as function of log L/L, along evolutionary tracks labelled by
their mass in solar units (fully drawn: numerical calculations; dashed:
Eq. (63)) (see also Kudritzki et al, 1987). Circles: galactic O-stars (k
=0.124, «=0.64, 6=0.07); squares: SMC O-stars (k=0.097, ¢ =0.580,
6=0.104)
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The relation v, =(0/1—a)2.2 % Upy * (Ves./1000 kms~1)02  as
found by FA is also shown in Fig. 13. Since this relation neglects
the influence of 4, its results must differ from the results displayed
in Fig. 13, as is already indicated by Fig. 6.

7.2. Central stars of PN

While the effects of spherical photospheric extension are moder-
ate for massive O-stars, they become important for Central Stars
of Planetary Nebulae (CSPN). Recently, Pauldrach et al. (1988,

T T T v T T T T —

N e /(Nyy + Ny 120.09 Nie /(Nyy+ Nye) =10

logr:Aa

50
10g Tess

Fig. 15a. log M as function of log T, for wind models of CSPN along
evolutionary tracks labelled by the stellar mass (fully drawn: numerical
calculations; dashed: Eq. (63)). k=0.053, «=0.709, 6=0.051 was chosen
for all the models (see Pauldrach et al., 1988)

T — T T T T — T T
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Fig. 15b. v, as function of log T for the same tracks as in Fig, 15a (fully
drawn: numerical calculations; dashed: Eq. (62)). =0.709, 6=0.051 was
chosen for all the models
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Fig. 15¢. v,/v.s as function of v2/v% for wind models of CSPN. The dots
are the results of the numerical calculations, whereas the dashed line
follows from Eq. (62). «=0.709, § =0.051 was chosen for all the models

Paper V) have computed detailed wind models for CSPN of
different mass between 0.55 M to 1.0 M, evolving at almost
constant luminosity towards higher temperature. In Fig. 15 we
show the results of a sequence of models, which were all calcu-
lated with o0 =0.709 and 6 =0.051. We see that v, and M are well
approximated by Eqgs. (62) and (64) for all the tracks. Figure 15¢
demonstrates the strong dependence of v, /v, on v?/v%,, which is
properly (within 10%) described by Eq. (62) over two decades in
v2/vZ,. The variation of M along the evolutionary tracks of
constant mass and luminosity (Fig. 15a) is caused purely by the
finite cone angle effect, since M, is constant as long as M, L, a, k
are constant. We see that this effect is also well described by
Eq. (64).

8. Conclusions and future work

In the preceding sections we were able to disentangle analytically
the different effects working in radiation driven winds, when the
radial streaming approximation is dropped and the finite cone
angle of the photospheric disk is taken into account. It was shown
that differential increase of the line force increases the acceler-
ation of the wind when going outwards. The mass-loss rate,
however, drops, because the absolute strength of the line force is
smaller in the region around the critical point. Both effects are
damped as soon as the geometrical extension of the photosphere
— characterized by v2/v%, — is increased. The ionization parameter
¢ in the line force has a similar influence.

The approximate analytical solution of the dynamical equ-
ations yielded formulae for v, /v.,, and M as functions of the
stellar parameters L, M, R, and the line force parameters k, « and
8. Thus, M and v /v, can be easily computed provided that this
line force parameter triple is given. However, at the moment,
parameter sets of (k, o, J) are available only for an approximate
treatment of NLTE metal occupation numbers in the radiation
driven winds (Abbott, 1982; PPK, Kudritzki et al., 1987). On the
other hand, the recent work by Pauldrach (1987), Puls (1987) and
Pauldrach et al. (1988a, b), which includes a detailed multi level
NLTE treatment, has led to significant changes in (k, a, §) for
selected objects. Thus the next step for the future work is to
investigate the general behaviour of k, a, J as function of stellar
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parameters including the detailed NLTE physics. This work is
presently under way in our group.
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Appendix 1

Here we briefly discuss the behaviour of the finite cone angle
correction factor CF(x, a, f) as defined by Eqgs. (13), (14), (15) and
justify the approximations of Egs. (48) and (50). Defining

A, By =u(1 —h)=%«/f+ Du—1) (A1)
the correction factor CF(x, «, f) can be written as

1 1
CF=—— ~(1—(1=2*Y). (A2)

a+1 4

The functions A(u, f) and CF(4, a) are sketched in Fig. 16. We
have A=1 for u=1 and 1=0 for u=(1+$)"! and u=0. The
minimum of 1 is located at u=(2(1+ f))~! and has the value of
Jmin= —(4B(B+1))"*. CF(4, a) is monotonically increasing with
J.Wehave CF=(1+4a) ! for A=1and CF =1 for A=0. The value
of CF at A=1,,, can be approximated to first order by an
expansion of CF in terms of small A to be CF . (Apinm % f)=
14+ a/(88(B+1)). The symmetric behaviour of A(u, f) on the

\1/(1+a0)

\Alu,B)

S/ABRAR)
it el

|

1

L ]
1

2(1+p) 1+f3

Fig. 16. Sketch of the functions A(u, f) and CF(4, «)
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interval 0<A<(2(1+f)) ! <A<(1+B)"! allows to approximate
CFYt== a5

CF(u,0, )" " *~1+b,u—bu?, 0<u<(1+p~ L (A3)

Demanding that CF!/!7*=1 for u=(1+p)"! and CF''7*=1
+(1/8) (/1 —a) (1/B(1 + B)) for u=(2(1+ B))~! we obtain
1 a 1
T2 1-ap
b,=b,(B+1). (A4)
For the interval (1+ )" '<u<1 the simplest, but sufficiently
accurate approximation is

CFu,a, PV *~ag—au, (1+p) '<u<l (AS)
Because of CF(1, a, f)V/' *=(1/14a)l/1 "=
. 1 )l/l—a .
or(rene (i) )
1 1/1—a .

Finally, we have to justify the approximation of Eq. (50) for the
function :

s 1 11-a\ \1/2
s o~((1-(rza) )

Figure 17 shows for the example §=0.05 and f=1.0 that F
increases rapidly with u to come close to the value F,. The
polynomical expansion given by Eq. (50) is therefore accurate
enough to approximate F for the integral of Eq. (52).

(A7)

Appendix 2

Here we justify the approximations of Eq. (55a), which yields the
critical velocity v,.

F(u)/F,

02 -

I I 1 1
08 06 04 02

Fig. 17. The function F(u, a, §, 6) (fully drawn) compared with the ap-
proximation of Eq. (50) (dashed) for the cases of «=0.5 and 0.7. (§=0.05
and f=1.0 were chosen for this example)
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The determination of v, requires the knowledge of y at the
Sf)nic point and dy/dx at the critical point (see Eq. 55). For y, a
simple expression is obtained from the equation of motion (Eq.9)
by inserting the singularity condition (Eq. 21) and Egq. (53) and
using the facts that v=0, and f(x.)~f(x,)

V/ye=(1—a)'’, (A8)

The far more complicate expression for y'(x.) follows from the
total detnvative of Eg. (5) and a subsequent application of
L’ Hospital’s rule (see also PPK Egq. (A6)). After some calculation

this leads to
. (962 Z/(16(1 —&)v? + a/2)!/2 a2 ViR, 3ba?vZ v2R,
(1—a)52x20? 4(1—a)3 vt x?

X vz (1—a) f” x¢vi(1—a)?

a=1+
vezsc a f 2“3052 v:sc
S 2(1—0) vix2
b=1—— —_ A9
T (A)

Inserting Eq. (A8), (A9) in Eq. (55) and making use of Eq. (21) one
gets

( 9b% v? 2a \ 72 ) 3bd\ V2
U, =10, + -
40—y e? (1=a) +<1 2a2) )/d

d=1—(1—q)

(A10)

Comparing the orders of magnitude of the terms in Eq. (A10) we
find that this expression is fairly well approximated by Eq. (55a).
(Note that d =1 was adopted to simplify the a-dependence. Since

d varies only between 0.97 and 0.94 for 0.5 <« <0.7 this accurate
enough.)
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