
Astron. Astrophys. 320, 899–912 (1997) ASTRONOMY
AND

ASTROPHYSICS

The X-ray emission from shock cooling zones in O star winds?

A. Feldmeier1, R.-P. Kudritzki1,2, R. Palsa1, A.W.A. Pauldrach1, and J. Puls1

1 Institut für Astronomie und Astrophysik der Universität, Scheinerstr. 1, D-81679 München, Germany
2 Max-Planck-Institut für Astrophysik, Karl-Schwarzschild-Str. 1, D-85740 Garching, Germany

Received 16 April 1996 / Accepted 17 September 1996

Abstract. A semi-empirical model is developed for the X-ray
emission from O star winds, and used to analyze recent ROSAT
PSPC spectra. The X-rays are assumed to originate from cool-
ing zones behind shock fronts, where the cooling is primarily
radiative at small radii in the wind, and due to expansion at
large radii. The shocks are dispersed in a cold background wind
whose X-ray opacity is provided by detailed NLTE calculations.

This model is a natural extension of the Hillier et al. (1993)
model of isothermal wind shocks. By assuming spatially con-
stant shock temperatures, these authors achieved good fits to
the data only by postulating two intermixed shock families of
independent temperature and filling factor – i.e., by adjusting
in parallel four parameters. By applying the present model to
the analysis of high S/N PSPC spectra of three O-stars (ζ Pup,
ι Ori, ζ Ori), we achieve fits of almost the same quality with only
two parameters. This supports the idea that the two- or multi-
component X-ray spectra are indeed due to stratified cooling
layers.
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1. Introduction

The X-ray satellite ROSAT, with its high energy resolution and
sensitivity, in particular at soft photon energies, is an ideal tool
to investigate the nature of the X-ray emission of hot, luminous
stars. Hillier et al. (1993) presented a high quality ROSAT PSPC
spectrum of the O4 I(f) star ζ Pup over the energy range from 0.1
to 2.5 keV. They were able to interpret this spectrum by a simple
model in which the X-rays arise from shocks distributed with
a constant filling factor throughout the wind. A large fraction
of the emission from these shocks is absorbed by the ambient
cool wind material, for which the wavelength dependent opacity
is calculated from detailed non-LTE stellar wind models. As it
turns out, this cool wind opacity is crucial for the emergent
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? Based on observations obtained with the ROSAT X-ray satellite.

X-ray spectrum which shows a maximum at 0.85 keV and a
significant drop towards lower energies (cf. Fig. 10).

Hillier et al. achieved a reasonable fit to the observations
with the assumption that all shocks were characterized by a
single temperature of logT [K] ≈ 6.60 (see their Fig. 2). But
the flux deficiency in the calculated spectrum for energies below
0.45 keV indicated that a cooler shock component of logT ≈
6.30 and of roughly equal filling factor as the hotter component
should be present (Fig. 4 of Hillier et al., and Fig. 10 of the
present paper). For the B bright giant ε CMa (B2 II), on the
other hand, Drew et al. (1994) and Cohen et al. (1996) claim
that a one-temperature model is incapable of explaining the
ROSAT spectrum, while good fits can be achieved with a two-
temperature model.

Generally, the wind shocks should have a cooling zone of de-
creasing temperature and increasing density that contributes sig-
nificantly to the X-ray spectrum (cf. Krolik & Raymond 1985).
Therefore, the use of a one- or two-temperature hot plasma emis-
sion coefficient, while valuable for the ad hoc characterization
of shock properties for individual hot stars, is of course ques-
tionable. Consequently, it is important to investigate how the
structure of a cooling zone behind the shock modifies the emis-
sion coefficient and the theoretical emergent X-ray spectrum.

Such an investigation is the purpose of the present paper. We
extend the concept of randomly distributed shocks embedded
in the absorbing cool wind, as used by Hillier et al., and re-
place their mono-temperature integral over the emitting region
to account for cooling gas behind the shock front. We adopt
simple approximations (§2) for the shock structure in the inner
region of a stellar wind, where the cooling time is shorter than
the flow time and the shocks are radiative; and for the outer re-
gions, where the shocks are non-radiative, i.e., they only cool by
adiabatic expansion. In §3, we apply this model to three O stars
with high signal-to-noise ROSAT PSPC spectra to test how the
theoretical X-ray spectrum is modified by the introduction of
structured shocks. A summary of the results is given in §4.

2. Simple post-shock models

Since radiation driven winds are inherently unstable (Lucy &
Solomon 1970; Carlberg 1980; Owocki & Rybicki 1984, 1985;



900 A. Feldmeier et al.: The X-ray emission from shock cooling zones in O star winds

Lucy 1984), it is reasonable to attribute the X-ray emission of
hot stars to shocks in their stellar winds. Hillier et al. (1993)
considered non-stratified, isothermal shocks, where the density
and temperature of the hot gas behind the front are constant with
radius. The energy emitted by hot gas from a volume dV into
the full solid angle 4π is

εν(r) = es(r)np(r)ne(r) Λν(ne(r), Ts(r)) dV [erg/s]. (1)

Here,np(r) is the proton density,ne(r) the electron density,Ts(r)
the temperature, and es(r) the volume filling factor of hot gas
behind a shock front located at radius r. The frequency depen-
dent cooling function of a hot plasma, Λν , is calculated using
the most recent version of the Raymond-Smith code (Raymond
& Smith 1977). Hillier et al. neglected the density dependence
in the argument of Λν and adopted Λν = Λν(1010 cm−3, Ts)
throughout the wind, which is a good approximation that we
also used in the following. To avoid any further explicit refer-
ence to the density of the hot post-shock gas, we redefine the
filling factor so that np and ne in (1) (and in subsequent equa-
tions) are the stationary, ‘cool’ wind densities. Notice that we
do not introduce a factor of 16 here as did Hillier et al. (1993)
to account for the density jump at a strong shock. The present
definition is more convenient to compare the filling factors from
different models of the X-ray emission from hot star winds with
differing densities of hot gas.

To account for the temperature and density stratification in
the shock cooling layer, εν is replaced by an integral over this
zone,

ε̂ν(r) = es(r)np(r)ne(r) Λ̂ν(Ts(r)) dV,

Λ̂ν(Ts(r)) = ± 1
Lc

r±Lc∫
r

f 2(r′) Λν(Ts(r) g(r′)) dr′, (2)

where r is again the location of the shock front, and r′ is the coor-
dinate in the cooling layer of extentLc. The ‘+’ sign corresponds
to a reverse shock, the ‘−’ sign to a forward shock. The functions
f and g describe the normalized density and temperature strati-
fication in the post-shock region, respectively. f = g = 1 returns
the non-stratified, isothermal shocks. With the introduction of
the dimensionless coordinate

ξ = 1− |r − r′|
Lc

, (3)

Λ̂ν can be written as (using the same symbols f and g again)

Λ̂ν(Ts) =
∫ 1

0
f 2(ξ) Λν(Ts g(ξ)) dξ. (4)

In principle, the functions f (ξ) and g(ξ) have to be calcu-
lated from time-dependent hydrodynamic simulations of radia-
tion driven winds. This is the topic of a forthcoming paper. In
the present paper we take a first step by using simplified ana-
lytical models for the radiative and adiabatic shocks typically
found in such numerical calculations.

2.1. Stationary radiative shocks

The decisive quantity to distinguish between alternative post-
shock models is the cooling time, tc, required by the shocked
matter to return to the ambient wind temperature again,

tc =
Lc

vpo

∫ 1

0

dξ
h(ξ)

. (5)

Here,h = |v−vs|/vpo, where v and vs are the wind speed and the
shock speed, respectively, in the stellar frame; vpo is the abso-
lute value of the speed of post-shock gas (i.e., gas immediately
behind the front) relative to the front. Therefore, vpoh(ξ) is the
speed of gas in the cooling zone relative to the shock front. If tc
is small compared with the dynamical flow time tf ,

tf =
r

v(r)
, (6)

the shock can be regarded as stationary.
Because of the very high temperature in the post-shock

region, the radiative acceleration of matter can be neglected.
The same is true for gravitational acceleration, since for strong
shocks the gravity scale height is large compared with the cool-
ing length Lc. In such a case then, the post-shock structure is
given by the stationary, 1-D plane-parallel gasdynamic equa-
tions, which include radiative cooling in the energy equation.
This problem has been discussed by Chevalier & Imamura
(1982; CI in the following) for special cases, where the fre-
quency integrated cooling function follows a power law in tem-
perature,

Λ(T ) =
∫ ∞

0
Λν(T ) dν = AR T

α. (7)

In the following we
shall use AR = 1.64 × 10−19 erg cm3 s−1 K1/2 and α = −1/2
as a reasonable approximation to the cooling function of a hot
plasma for temperatures in the range 104.8 ≤ T ≤ 107.3 K (Cox
& Tucker 1969; Raymond et al. 1976). Extending the analysis
of CI to the cooling exponent α = −1/2, we obtain the solution

f (ξ) =
1

h(ξ)
,

g(ξ) = 1
3 h(ξ)(4− h(ξ)),

ξ(h) =
1

93
√

3− 40π

{
−120 arccos

(
1− 1

2h
)

+
√

4h− h2
(
60 + 10h + 2h2 + 29h3 − 8h4

)}
, (8)

where 0 ≤ h ≤ 1. The total cooling time and cooling length are

tc =
40
7

C

AR

v3
po

ρpo
,

Lc =
93
√

3− 40π
10

C

AR

v4
po

ρpo
, (9)
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Fig. 1. Post-shock structure for a steady radiative shock after Eq. (8).
The density function f and temperature function g defined in (2) are
shown. Dashed line: approximation for f and g after (11).

where for a hydrogen/helium gas the constant C is given by
(with mp the proton mass, k the Boltzmann constant)

C =
m

5/2
p

k1/2

(1 + 4Y )5/2

(1 + IY )(2 + [1 + I]Y )1/2
. (10)

The helium fraction by number is Y = nHe/nH, and I is the
number of free electrons provided per helium nucleus; hydrogen
is assumed to be fully ionized. Fig. 1 shows the density function
f and the temperature function g.

To the best of our knowledge, the function ξ(h) in (8) cannot
be inverted analytically to give h(ξ). From a Taylor expansion
at h = 0 and the requirement that h(1) = 1 at the beginning of
the cooling zone, we find

h(ξ) = a ξ2/7
[
1 +

(1
a
− 1

)
ξ2/7

]
, (11)

where a =
[

7
10

(
93
√

3
40 − π

)]2/7 ≈ 0.87225. This is accurate to
better than 1.4% over the whole cooling zone, see Fig. 1, and is
therefore used in the following.

With (8) and (11), the post-shock structure is well defined
and the cooling function of the stratified shock can be calculated
according to (4). The result is shown in Fig. 2 for logTs = 6.6
(for gas of solar composition). The stratified shock emits signif-
icantly more radiation at soft energies, and less above 1.3 keV
than an isothermal shock. This can be understood from Fig. 3.
In the temperature-energy plane the Raymond-Smith function
Λν(Ts) has a maximum at (logT = 6.25;E = 0.5 keV). Ac-
cording to (4), all layers with T ≤ Ts contribute with increas-
ing weight factor f 2 to the cooling function Λ̂ν(Ts) for struc-
tured shocks. For logTs = 6.6 and E ≤ 0.5 keV, Λν(Ts g)
passes the maximum and, thus, Λ̂ν(Ts) becomes larger than
Λν(Ts). For logTs = 6.6 and E > 1 keV, Λν(Ts) decreases

Fig. 2. Cooling function versus energy for logT = 6.6. Solid: strati-
fied radiative shock emission Λ̂ν (T ); dashed: Raymond-Smith function
Λν (T ).

so rapidly that the weighting factor f 2 is not able to compensate
and Λ̂ν(Ts) < Λν(Ts) results. Fig. 4 shows the ratio Λ̂ν/Λν in
the temperature-energy plane.

To calculate the X-ray emission from an ensemble of embed-
ded wind shocks, we need to know the shock temperatureTs and
the filling factor es as functions of radius. Notice that while the
density and temperature stratification, f and g, within the cool-
ing zone are ‘microscopic’ functions, i.e., they depend on short-
scale radiative cooling only, Ts and es are ‘macroscopic’ quan-
tities which depend on the actual wind dynamics. One might try
however to derive some ad hoc conclusions about them. Con-
cerning the filling factor, a simple argument may proceed as
follows: assume for the moment that the shock temperature is
independent of radius in regions where the wind has reached a
substantial fraction of its terminal velocity. From (9), the cooling
length then grows as Lc ∝ 1/ρ ∝ r2. If we assume furthermore
that no shocks are created beyond a certain location in the wind,
and that the shocks are also not destroyed on their further prop-
agation, the filling factor grows as es ∝ r2.

However, time-dependent hydrodynamic simulations
(Owocki et al. 1988; Owocki 1992; Feldmeier 1995) of initially
small perturbations which grow in an unstable wind confirm
these conclusions only partially1: here, the shock temperatures
and shock spacing result from complex wind dynamics, which

1 In these simulations, the smooth, stationary wind is usually trans-
formed into a sequence of narrow, dense shells, which are separated
by almost void regions. On their starward side, the shells are bound
by a strong reverse shock, which decelerates a fast, inner wind stream.
On their outer side, they are bound by a weak forward shock which
overtakes the slower gas ahead of it (at larger radii), and compresses it
into the shell.
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Fig. 3. Isocontours of log Λν in the log T–energy plane.

Fig. 4. Isocontours of log (Λ̂ν/Λν ) in the log T–energy plane.

lead to frequent mergers of shocks. Notice that the latter falsify
the above assertion that shocks should keep their identity. The
results from these calculations are broadly consistent with con-
stant or slowly decreasing temperatures and filling factors of
hot gas as a function of radius. However, the details of the wind
dynamics are still largely unknown, (i) due to approximations in
the treatment of the radiative transfer, the small-scale structure
in the wind, and thermal instabilities (see below); and (ii) since
neither the location (photosphere vs. wind), the nature (pulsa-
tions, waves, noise, etc.), nor the temporal coherence (periodic
vs. stochastic) of the seeding perturbations are known at present

from variability observations of hot stars (cf. the volume edited
by Moffat et al. 1994). Thus, for simplicity, we shall suppose in
the following constant Ts and es throughout the wind.

Two further important restrictions have to be made. The first
one concerns the thermal instability of radiative shocks. Langer
et al. (1981, 1982) and CI have pointed out that for temperature
exponents α <∼ 1 in the cooling function power law (7), a global
thermal instability exists that leads to a periodic contraction and
expansion of the cooling zone, i.e., to an oscillation in the posi-
tion of the shock. The typical timescale of this oscillation is of
the order of a few cooling times. Since the density and temper-
ature stratification of the post-shock region change during the
course of this contraction and expansion, and since these quan-
tities enter non-linearly into the shock emission coefficient, the
thermal instability will certainly affect the emitted spectrum.
In the model presented here, we have simply neglected these
effects to keep them analytically tractable.

The second restriction is given by the assumption that the
cooling time tc is small compared with the dynamical flow time
tf . We expect that far out in the wind at low densities, tc will
become larger than tf and the assumption will fail. Using the sta-
tionary wind velocity law (where r̂ ≡ r/R∗, v∞ is the terminal
velocity, and with assumed value of β = 1),

v(r) = v∞
(

1− b

r̂

)
, b = 0.99, (12)

and the equation of continuity together with (6) and (9), we
obtain for the ratio of cooling to flow time (where Ṁ is the
mass loss rate; and T6 is the temperature in units of 106 K),

tc

tf
= 5.37× 10−4

( v∞
103 km/s

)2( Ṁ

10−6 M�/yr

)−1 R∗
10R�

×
(1 + 4Y )(2 + [1 + I]Y )

1 + IY
T

3/2
s,6 r̂

(
1− b

r̂

)2
, (13)

and for the ratio of the cooling length to the position of a shock,
rs,

Lc

rs
= 1.75× 10−5 v∞

103 km/s

( Ṁ

10−6 M�/yr

)−1 R∗
10R�

×

(1 + 4Y )1/2(2 + [1 + I]Y )3/2

1 + IY
T 2

s,6

(
r̂ − b

)
. (14)

For the O star ζ Pup, e.g., we find from Table 1 (using I = 1,
cf. Sect. 3),

tc

tf
= 2.59× 10−3 T

3/2
s,6 r̂

(
1− b

r̂

)2
,

Lc

rs
= 4.62× 10−5 T 2

s,6

(
r̂ − b

)
. (15)

For Ts = 5 × 106 K, e.g., we obtain for ζ Pup r0 = 36R∗ for
the radius at which tc/tf is unity. At this radius, Lc/rs = 0.04
is still small.
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However, as discussed before, the actual wind dynamics
may be far from stationary, and due to the progressive accu-
mulation of the wind gas into dense shells, these values for r0

may be (much) too large. This is discussed further in the next
section.

For X-ray photons which stem from radii larger than r0,
the approximations made in this section will be invalid. Con-
sequently, we next study an alternative approximation that will
hold for locations beyond r0.

2.2. Constant velocity adiabatic shocks

Far out in the wind, where r � r0, the radiative cooling of
the shocks can be neglected. We thus expect spherical segments
of shocks that started at much smaller radii will expand un-
dergoing adiabatic cooling only. In addition, the unperturbed
wind has achieved its terminal velocity and radiative acceler-
ation is small. Simon & Axford (1966; SA in the following)
have treated such a problem for a pair of reverse-forward shock
waves which propagate at constant velocity through the outer
solar wind and/or interplanetary medium. As mentioned before,
such pairs of shocks which enclose a shell of dense material are
also expected from time-dependent hydrodynamic simulations
of hot star winds.

SA solve the spherical problem of a driven shell (see below
for the precise meaning) in terms of the similarity variable

η =
r

vf t
, (16)

where vf is the velocity of the forward shock front, which is
therefore located at ηf = 1. (At t = 0, the whole shell is at
r = 0.)

This similarity variable is appropriate only for the case that
all flow features (shocks and contact discontinuities) move at
constant speeds. As discussed by SA, this corresponds to a tem-
porally constant mass loss rate of the source after the shell re-
lease, where the latter is caused by a sudden jump of the density
and velocity (and therefore, usually, of the mass loss rate; cf. Ap-
pendix A). The general case of a similarity variable η = r/Atδ

corresponds to a time dependence vf ∝ tδ−1 of the speed of all
flow features, and a change in mass loss rate Ṁ ∝ tδ−1 of the
source after throwing off the shell. This temporal behaviour of
source conditions is meant to mimic a solar flare and the subse-
quent return to the quiescent wind. – However, for the radiation
driven winds of hot stars it is at present not clear how the non-
similarity dynamics at small radii serves as an inner boundary
condition for the similarity solution (possibly) achieved at large
distances. As discussed in the foregoing section, this is both
due to the unknown nature of the wind perturbations, and to the
intricate shock dynamics with frequent merging, etc. (in Ap-
pendix B we shall demonstrate for a simple example how shock
collisions can influence the propagation characteristics of the
shocks, i.e., the parameter δ). In particular, it seems possible
that the outer, adiabatic flow belongs to the class of similarity
problems for which, according to Zel’dovich & Raizer (1967,

Chap. XII, p. 794), the “self-similar motion originates as a re-
sult of some non-selfsimilar flow that approaches a self-similar
regime asymptotically”, and where the similarity exponent δ
cannot be determined in advance by dimensional considera-
tions or from the conservation laws, but has to be found from
the actual solution of the problem. In light of these uncertainties,
our assumption of constant shock speeds and therefore constant
shock temperatures in the outer similarity regime appears to be
a reasonable ‘minimum hypothesis’.

One may then try to derive the radial dependence of the
filling factor es of the completely macroscopic (Ts, es and f ,
g) adiabatic shocks: since all shells move at the same speed,
and since the forward shocks propagate faster than the reverse
shocks, every forward shock should eventually overtake the re-
verse shock of the neighboring shell ahead of it. As long as all
shock speeds remain constant, and the distance between suc-
cessive shells is small compared with the radii the shells are
located at, es ∝ r. However, as shown in Appendix B, this does
not imply the existence of an outer, hot corona. Instead, the fill-
ing factor of hot gas always remains < 1 (or even � 1), while
it is the fraction of gas which passed through a shock transition
which approaches unity.

Furthermore, time-dependent wind simulations of unstable
growth show that many (if not most) radiative reverse shocks, in-
stead of being progressively transformed into adiabatic reverse
shocks at large radii r0 � 10R∗, are suddenly destroyed at in-
termediate radii <∼ 10R∗, and leave behind hot, adiabatic cool-
ing gas which was heated in the front at previous times (Feld-
meier 1995). – Due to these two processes of shock merging
and shock destruction, a monotonically decreasing or roughly
constant filling factor is more appropriate than the increasing
filling factor asserted above. In the following, a constant es will
be supposed.

Finally, in the comparison with observations it is important
to realize that exposure times of ROSAT are of the order of some
1000 seconds, whereas for r >∼ 100R∗ the flow time is some
105 seconds. Therefore, every exposure reflects the momentary
position and stratification of shocks in the outer wind. As a
consequence, the post-shock solutions ρ(η) and T (η) obtained
by SA describe purely spatial structures in our case, since the
time t in the definition of η can be regarded as constant for every
exposure.

In terms of the similarity variable from (16), the hydrody-
namic quantities are written as

v(r, t) =
rV (η)
t

, ρ(r, t) =
ρ0σ(η)
r2

, p(r, t) =
ρ0π(η)
t2

. (17)

Note that the velocity of every flow feature f , i.e., shocks
and contact discontinuities, is then Vf ≡ 1, since vf = rf Vf/t
and also vf = rf/t.

The positions of the reverse shock, ηr, and the contact dis-
continuity inside the shell, ηc, are found from numerical inte-
gration of the ordinary differential equation (10) of SA. The
two integration constants which determine a special solution
are chosen to be
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Fig. 5. Dependence of the position ηc of the contact discontinuity on
the inflow parameter κf = vf,pr/vf .

κf = vf,pr/vf ,

Θ = Tr,po/Tf,po. (18)

Here and in the following, indices ‘r’ and ‘f’ refer to the reverse
and forward shock, respectively. SA fixed κf = 1 for the solar
wind by neglecting the ambient wind speed as compared with
the forward shock speed. In general, for a non-negligible speed
v∞ ahead of the forward shock, one finds (with µ the mean
atomic weight)

κf =

(
1 +

3
4
v∞
vf,ju

)−1

=

(
1 +

√
3µmp

16k
v∞√
Tf,po

)−1

, (19)

where vju is the velocity jump across the shock, and in the first
equality vpr = 4

3vju and vf = vhi + 1
3vju (with vhi the velocity

immediately behind the shock front) have been used for a strong
shock in a gas with γ = 5/3. For typical O star wind speeds, and
temperatures of the forward shock up to 107 K, 0 ≤ κf ≤ 0.3.

The position of the contact discontinuity and of the reverse
shock are then functions of κf and Θ,

ηc = ηc(κf ),

ηr = ηr(κf ,Θ). (20)

The (numerically derived) function ηc(κf ) is shown in Fig. 5. A
good fit to this is

ηc = 1− 0.1314κf − 0.02857κf
2. (21)

The function ηr(κf ,Θ) is determined by Fig. 6. For different
values of κf , Fig. 6 shows the dependence of the ratio of the

cooling lengths of the reverse and forward shock, (ηc−ηr)/(1−
ηc), on Θ. In the range 0 ≤ κf ≤ 0.3, this can be approximated
by

ηc − ηr

1− ηc
= (1− κf + κf

2) Θ
1
2−0.31κf +0.55κf

2

. (22)

From Fig. 6 (and also from the foregoing equation),

lim
κf→0

ηc − ηr

1− ηc
=
√

Θ, (23)

or, stated differently: for every adiabatic shock with small cool-
ing length (i.e., with sufficiently low post-shock temperature)
the cooling length scales as the square root of the post-shock
temperature,

lim
Lc/r→0

Lc ∝
√
Tpo. (24)

This can be understood as follows. The adiabatic energy equa-
tion for a fluid particle is (with d/dt the Lagrangian derivative)
dT/dt = −(γ− 1)T div v. Therefore, the cooling length scales
as Lc ≈ −T (dT/dt)−1 vpo ∝ (div v)−1 vpo. Assuming pressure
constancy in the cooling zone (see below) one finds from the
Euler equation that the velocity gradient is v′ ≈ 0. Assuming
spherical symmetry, it follows that Lc ∝ r

2v vpo. For all shocks
with a velocity jump which is small compared with the station-
ary wind flow speed one can identify v ≈ vstat. Furthermore,
since for such weak shocks the cooling zone is short compared
with dynamical length scales, Lc � r, the radius r in the fore-
going expression forLc is a well-defined, single location. Using
finally vpo ∝

√
Tpo, the above assertion Lc ∝

√
Tpo follows.

Within the cooling layers behind the forward and reverse
shocks, the spatial post-shock coordinate ξ introduced in (3)
can be related to η by

η = ηc + ξ(1− ηc) forward shock,

η = ηc − ξ(ηc − ηr) reverse shock, (25)

where 0 ≤ ξ ≤ 1.
SA give a power-law expansion (their Eq. 11) for the density

and temperature in the neighborhood of the contact discontinu-
ity, that leads to the following functions f and g in (2) (the first
position in the braces corresponds to the forward shock, the
second to the reverse shock),

f (η) = {1,Θ−1}
(
η{f,r}
η

)2

h(η)−4/9,

g(η) =
1

f (η)
,

h(η) =
(ηc/η)3 − 1

(ηc/η{f,r})3 − 1
. (26)

Again we defined ff = gf = 1 immediately behind the forward
shock (notice that σ(η) ≡ 4η2f (η), since SA use the conven-
tion σf,pr = 1). In taking g = 1/f , we assume the pressure to
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Fig. 6. Dependence of the ratio of the cooling lengths of the reverse
and forward shock, (ηc − ηr)/(1− ηc), on the shock temperature ratio
Θ, for different values of the inflow parameter κf .

Fig. 7. Full line: exact numerical solution for the SA shell
(κf = 0.1; Θ = 10). Dashed line: approximate analytical solution (26).

be constant through both cooling zones, πpo = 3
4κf

2, which is
actually a very good approximation (cf. SA). This pressure con-
stancy also allowed us to fix the density at the reverse shock. As
can be seen from Fig. 7, the expansion (26) also describes the
overall run, found by numerical integration, of f and g within
the cooling zones very well, and is therefore used to calculate
the emission coefficient (2) analytically.

Comparing Figs. 1 and 7, one sees that the cooling in the
adiabatic shock proceeds more uniformly (i.e., the change in
slope over the cooling zone is smaller) than in the radiative

Fig. 8. Cooling function versus energy for logT = 6.6 of an adiabatic
shock with Θ = 1 (full line) and of a radiative shock (dashed line).

shock. The reason is that the gas in the radiative shock undergoes
runaway cooling (Field 1965), i.e., it cools the better the colder
and therefore denser it already is. This is also reflected in Fig. 8
where the cooling functions of an adiabatic shock (Θ = 1 is
used here) and a radiative shock of temperature logT = 6.6 are
shown. The adiabatic shock has more emission at low energies,
and less emission at high energies than the radiative shock; i.e.,
the adiabatic shock has the softer spectrum.

3. Spectral fits for three selected O stars

We assume that the shock temperature, Ts, and the volume fill-
ing factor, es, have one single, unique value (i) for radiative and
adiabatic shocks, and (ii) for reverse and forward shocks. Ts

and es are then the only two parameters to fit the X-ray spec-
trum. These restrictions are again meant to make our model
directly comparable to the Hillier et al. model, with the one
central difference that we use structured cooling zones behind
shocks instead of isothermal shocks. We solve the X-ray trans-
fer via a formal integral, where the wind flow is assumed to be
spherically symmetric. The X-ray emission is given by (2). (As
in Hillier et al., we assume that no X-rays are emitted from be-
low Rmin = 1.5 R∗.) The bound-free and line opacities for the
cold background wind are taken from full NLTE models, and
the K-shell opacity is treated for the elements C, N, O, Ne, Mg,
Si, S (Daltabuit & Cox 1972).

In the following we present results for the three O stars from
Table 1. (The analysis of the full sample of 42 O stars observed
with the ROSAT PSPC is topic of a forthcoming publication;
preliminary results are given in Kudritzki et al. 1996). They
should be ideal candidates to test our X-ray model since they
have among the highest signal-to-noise ratio within our full sam-
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Table 1. Parameters of the analyzed O stars.

star classif. Teff

103 K
log g R∗

R�
Y v∞

km/s
Ṁ

10−6 M�/yr
log

(
NH

cm−2

)
ζ Pup O4 I(f) 42 3.6 19 0.12 2250 5.9 20.00
ι Ori O9 III 34 3.5 18 0.18 2350 0.8 20.30
ζ Ori O9.7 Ib 32 3.2 24 0.10 1850 2.4 20.48

Fig. 9. Location of optical depth unity for X-rays in the ROSAT energy
band for the three stars from Table 1: ζ Pup (full); ι Ori (dotted); ζ Ori
(dashed).

ple. Furthermore, their stellar and wind parameters are known
to a good accuracy: for ζ Pup, the photospheric parameters are
taken from Kudritzki et al. (1983) with the log g correction for
‘unified’ effects and centrifugal forces from Puls et al. (1996).
For ι Ori, photospheric parameters are from Lamers & Leitherer
(1993) and references therein; and for ζ Ori from Voels et al.
(1989). The terminal velocities for all three stars are from Haser
(1995). The mass loss rates are from Puls et al. (1996), where
for ι Ori and ζ Ori the measurements of Lamers & Leitherer
have been reanalyzed. Additionally, the mass loss rate of ζ Ori
has been recalibrated to the photospheric parameters from Voels
et al. and the terminal velocity from Haser, following the pro-
cedure described in Puls et al. Metal abundances (which enter
through the opacities) are derived for ζ Pup from an analysis
of UV spectra (Pauldrach et al. 1994; Haser 1995). For ι Ori
we assume CNO processed material, and for ζ Ori we presently
assume solar abundances. Finally, the interstellar hydrogen col-
umn densities,NH, are from Shull & van Steenberg (1985) using
interstellar Ly-α. This is certainly advantageous over deriving
NH from the X-ray fits themselves.

We notice that ζ Ori showed an episodic change in its X-ray
emission during a period of 2 days from Sep 23 to 25 in 1992,
when the count rate in the energy band from 0.6 to 2.4 keV

increased by ≈ 30% (Berghöfer & Schmitt 1994). The latter
authors proposed a single, strong reverse shock as the cause.
This event is not included in our data set which reaches only
to Sep 19, 1992. For ζ Pup, on the other hand, Berghöfer et al.
(1996) found a modulation of period 16.7 hours and amplitude
<∼ 10% of the count rate in the energy band from 0.9 to 2.0 keV.
This was traced back to periodic density variations at the wind
base. Since our data set for ζ Pup covers ≈ 16 cycles of this
modulation, the data should define a proper average emission.
– In total, we conclude that our present stationary model for
the X-ray emission should be adequate to analyze the ROSAT
observations of the above three program stars.

For the comparison of our model fits with the ROSAT obser-
vations we have also to consider sources of uncertainties of the
data themselves, especially due to the calibration of the PSPC.
As advised by the ROSAT User’s Handbook (Oct 1994, draft
version) we excluded energies above 2.2 keV when fitting the
observed spectrum due to insufficient calibration of the effective
area and energy response above 2 keV. The Handbook also rec-
ommends not using energies below 0.11 keV (detector channel
11) for observations taken after October 11th 1991. Half of the
integration time for ζ Ori, and all the integration time for ζ Pup
and ι Ori occurred after this date. Therefore we excluded the
first data point in the observed spectrum. Finally, uncertainties
in the calibration of the PSPC detector response can account for
≈ 20% of the deviations between model and observation at the
prominent dip in the observed spectra near 0.4 keV. We there-
fore also ignored the 2 to 4 data points in the range from 0.38
keV to 0.48 keV in the fitting procedure.

Fig. 9 shows the location of optical depth unity (with optical
depth zero at the observer) in the winds of the three stars from
Table 1, for X-ray energies in the ROSAT band. From this figure
it is clear that soft X-rays can escape the dense wind of ζ Pup
only from large radii. Physically, this is due to the fact that
helium starts to recombine to He+ from≈ 6R∗, which increases
the opacity enormously (cf. Hillier et al. 1993). In contrast,
helium stays fully ionized in the winds of ι Ori and ζ Ori up
to very large radii. Accordingly, the ROSAT spectrum of ζ Pup
(cf. Fig. 10) is harder than that of ι Ori (Fig. 11). The spectrum
of ζ Ori in Fig. 12 lies intermediate between the former two.
This is mostly due to the larger NH in direction of this star than
of ι Ori.

Also shown in Figs. 10, 11, and 12 are our best fits to the
ROSAT spectra of ζ Pup, ι Ori, and ζ Ori respectively, together
with the fits from the Hillier et al. isothermal shock model as-
suming one or two hot components. Table 2 gives the post-shock
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Fig. 10. ROSAT PSPC spectrum of ζ Pup (error bars) together with our best fit (full line) assuming inner radiative and outer adiabatic shocks.
For comparison, the best fits from a one-component (dotted line) and two-component (dashed line) isothermal shock model after Hillier et al.
(1993) are also shown.

Fig. 11. Spectrum and fits of ι Ori. Labeling of the curves as in Fig. 10.

temperatures and the volume filling factors derived for the three
stars. The following conclusions can be drawn from this.

(1) Temperatures: The post-shock temperatures of the
present model with resolved cooling zones are, for all three stars,
≈ 30% higher than the temperatures of the hotter shock family
of the two-component model after Hillier et al.; they are 60%
to 80% higher than the temperatures from their one-component

model. The need for higher temperatures in the present approach
is clear from the fact that the Hillier et al. temperatures corre-
spond to averages over the cooling zones.

(2) Filling factors: (a) The sum of the two individual fill-
ing factors from the two-component model after Hillier et al.
is about equal to the filling factor from their one-component
model. (b) The latter is about 2.7 times the filling factor from our
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Fig. 12. Spectrum and fits of ζ Ori, cf. Fig. 10.

Table 2. Derived post-shock temperatures and volume filling factors
for the O stars from Table 1; both for the present wind model which
assumes radiative and adiabatic shock cooling zones, and for the one-
and two-component isothermal shock models after Hillier et al. (1993).

cooling zones isothermal
2-comp. 1-comp.

ζ Pup logTs = 6.75 6.64 / 6.20 6.54
es [10−3] = 4.3 6.8 / 4.4 11

ι Ori 6.68 6.58 / 6.14 6.43
35 53 / 31 96

ζ Ori 6.68 6.57 / 6.27 6.46
5.0 7.9 / 4.3 14

model with resolved cooling zones. – The reason for (a) is that
the Raymond-Smith function at energies 0.1 <∼ E [keV] <∼ 0.5
and temperatures 6.3 <∼ logT <∼ 6.7 can be very roughly ap-
proximated (cf. Fig. 3) by Λν(T ) ≈ AνT

α, with α >∼ −1/2.
This implies a comparable contribution from both the hotter and
colder component to the soft X-ray flux, i.e., the total filling fac-
tor is the sum of the individual filling factors. – The main reason
for (b) is the density stratification of the cooling zone: for sim-
plicity we consider only radiative shocks, and use h(ξ) = ξ2/7

as an approximation to (11). We suppose that the frequency
integrated emission from a radiative shock and an isothermal
shock should be equal. For the cooling function from (7), with
exponent α = −1/2, Eqs. (1) and (2) give then

(e/
√
T )iso = 7

√
3 (2−

√
3) (e/

√
T )rad ≈ 3.2 (e/

√
T )rad. (27)

Since the temperatures are fixed from the spectral fits, where
typically Trad ≈ 1.7Tiso results (cf. item 1), we are left with
eiso ≈ 2.5 erad, in good agreement with the above figure of 2.7.

(3) Fit quality: Our fits with 2 adjustable parameters are
better than (or, in the case of ζ Ori, equally as good as) the
one-component fits of Hillier et al. (also 2 parameters), and are
almost as good as their two-component fits (4 parameters). This
is one of the main results of the present paper. – Actually, we
find that the two-component Hillier et al. model has too many
free parameters, in that the temperature of the hotter component
is often left unconstrained by the fit procedure by orders of mag-
nitude. The fits are then to be considered somewhat fortuitous.
Furthermore, we note that the one-component fit for ζ Ori is
already very good, and only minor achievements can be won
from the other two models. ζ Ori seems to be exceptional in
this respect since no other star in our full sample can be fitted
equally well with a one-temperature model.

As was discussed in the foregoing sections, time-dependent
hydrodynamic simulations of hot star winds indicate (i) that re-
verse shocks are generally stronger than forward shocks; and
(ii) that the reverse shocks are abruptly destroyed at relatively
small radii, instead of being gradually transformed into adiabatic
shocks at large radii. We simulate this shock destruction by ap-
plying r0 = 8R∗ (cf. Section 2.2) in our fit procedure, since in a
first, crude approximation the leftover, adiabatic cooling gas can
again be viewed as an SA cooling layer. This gives almost iden-
tical results to the ones in Table 2: the derived temperatures and
filling factors differ by ≈ 10% only, and the fit quality is about
equal. To test the importance of item (i), we assume Θ = 10 for
adiabatic shells, instead of Θ = 1 above. Using a large r0 from
stationary wind densities (cf. Eq. 13), the fit quality is again
comparable to the one from Figs. 10 to 12 (however, usually not
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as good), and the derived temperatures and filling factors differ
by ≈ 30%. Finally, applying both r0 = 8R∗ and Θ = 10 at
once results in definitely poorer fits, and the derived parameters
differ by≈ 40% from the ones in Table 2. – However, we do not
consider either Θ or r0 to be adequate fit parameters; instead
they should be fixed to plausible values. Valuable information in
this respect may – hopefully – be gained from time-dependent
hydrodynamic wind simulations.

The question remains as for the influence of the interstel-
lar column density on our results. Varying logNH within the
estimated error bounds of Shull & van Steenberg, ∆ logNH =
(ζ Pup: ±0.05; ι Ori: ±0.15; ζ Ori: ±0.1), alters the temper-
atures by ∆ logTs = (∓0.01; ∓0.08; ∓0.06), and the filling
factors by ∆es = (±0.2;±10;±1) × 10−3 for the model with
cooling zones. Recently, Haser (1995) derived a column den-
sity to ζ Ori of logNH [cm−2] = 20.34, which is slightly off
the error interval of Shull & van Steenberg (1985). This lowNH

results in a somewhat poorer fit: because the free-free opacity
drops ≈ E−3, the hard part of the spectrum is practically left
unaltered – and so should be the fit parameters. On the other
hand, the soft X-ray flux is enhanced by lowering the column
density, and deviates from the ROSAT data then. Assuming that
the true NH to ζ Ori lies at the lower edge of values allowed by
Shull & van Steenberg (1985), our shock temperature for ζ Ori
from Table 2 would be 15% too low, and the filling factor 25%
too high.

Finally we add some comments about the fit quality near the
dip at 0.4 keV. As mentioned above, we ignored the data points in
this neighborhood due to calibration uncertainties in the detector
response. If, on the other hand, these data points are included, the
largest deviations between model and observation are found if
helium is fully ionized throughout the wind. The reason is that
in the latter case the K-shell opacity is the dominant opacity
source at energies around 0.4 keV. Preliminary test calculations
indicate that especially a change in carbon abundance can have
a large effect on the dip due to its proximity to the C IV K-shell
edge at 0.347 keV. But even the nitrogen and oxygen K-shell
edges which are located at somewhat higher energies can affect
the dip. The reason is that monochromatic photons are spread
out over several detector channels. Future work will have to
show to what degree this can remove deviations between model
and observation at energies near 0.4 keV.

We close this section with a comparison of our method and
results with those of Cohen et al. (1996). These authors used both
ROSAT and EUVE data to constrain high-temperature emis-
sion models for the B giant ε CMa (B2 II). They arrived at the
strong conclusion that the simplest model (from a hierarchy of
increasing complexity) to fit both the X-ray spectrum and the
five observed EUV iron emission lines between ≈ 40 and 70
eV simultaneously is one where: (i) the hot gas is distributed
through a cold background wind, (ii) the opacity of this cold
wind for EUV radiation and soft X-rays is included, and (iii)
the emitting plasma has a continuous temperature distribution.
Contrary, a two-temperature model is not sufficient. The total
number of free parameters of this fit model is five, where Ṁ/v∞
is taken as a free parameter which characterizes the wind atten-

uation. Notice that all three items (i) to (iii) are also specific to
the model presented here.

Cohen et al. make a power-law Ansatz for the tempera-
ture dependence of the differential emission measure, Q ∝ T a,
where Q is defined as Q(T ) ≡ npnedV/dT , i.e.

εν =
∫

npne Λν(T ) dV =
∫

Q(T ) Λν(T ) dT. (28)

Translating this to our approach from Sec. 2 where temper-
ature changes are due to (radial) cooling zones only, T = T (ξ),
but where the shock-temperature is not a function of radius, we
have

Q ∝ f 2 dξ
dg
∝ 1

g2g′
, (29)

with the functions f and g – where T ∝ g – defined in (2),
and g′ ≡ dg/dξ. In the second proportionality of (29) we made
use of the approximation that the pressure is almost constant
in the cooling zone, f ∝ 1/g, cf. (8) and (26). For radiative
shocks then, from (11), g ∝ ξ2/7, i.e. g′ ∝ g−5/2, or a = 1/2.
In contrast, for adiabatic shocks, g is seen from (26) to vary
between g ∝ ξ2 and g ∝ ξ2/3, which corresponds to a = −5/2
anda = −3/2, respectively. Cohen et al. (1996) found from their
fits a = −0.8±0.35, which lies within this range of a-values for
radiative vs. adiabatic shocks. We can even push this argument
further. Our calculated X-ray spectra in the present paper are
dominated by inner radiative shocks, with the outer adiabatic
shocks serving more or less as a correction term to the soft X-
ray flux. On the other hand Cohen et al. analyze a rather thin
wind with Ṁ ≈ 2 . . . 6 × 10−8 M�/yr, and correspondingly
derive filling factors of<∼ 0.1 which are larger than our values in
Table 2. (Notice that the global filling factor of Cohen et al. 1996
is identical to our local filling factor since the latter is assumed
to be radius independent.) Both the low Ṁ and the rather large
filling factor are hints that cooling by adiabatic expansion may
already be competitive to radiative cooling in this B star wind at
low heights – which in turn could be a plausible explanation why
the value for a of Cohen et al. lies between the above values for
radiative vs. adiabatic shocks. However, this is speculation since
in principle we believe that some kind of radial temperature
stratification is realized in the wind; our claim is therefore only
that our fit model is consistent with the findings of Cohen et al.
(1996).

4. Summary

We have generalized the isothermal shock emission coefficient
of the X-ray transfer model of Hillier et al. (1993) to include the
effects of radiative and adiabatic cooling layers behind shock
fronts. Under the assumption that all shocks in the wind have
the same temperatures and filling factors, our fits to high-quality
ROSAT PSPC spectra of three selected O stars are of about the
same quality as the two-component fits of Hillier et al., where
the latter authors however had to adjust twice as many param-
eters. Furthermore, the shock temperatures and filling factors
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derived from the two-component model are consistent with the
temperature and density stratification of cooling zones. This
supports the idea that the observed two- (or multi-) component
X-ray spectra can be traced back to such stratified cooling zones.
However, we cannot exclude an additional contribution from a
radius-dependency of shock temperatures and filling factors.

Our model establishes a robust framework within which cer-
tain X-ray properties of hot stars – here: temperatures and filling
factors – are defined, probably in an averaged sense. Therefore,
it should be adequate to analyze the sample of ROSAT PSPC
observations of 42 O stars. However, the model is meant as a first
approximation only to the real structures which emit X-rays in
hot star winds. A discussion of such possible flow phenomena,
including shell collisions and ‘old’ hot gas leftover from shock
destruction, is given in Feldmeier (1995).

The ROSAT data pose severe constraints on hydrodynamic
models which try to synthesize the X-ray spectra from the emis-
sion of instability-generated shocks. The most serious concern
is the rather small amount of hot gas usually predicted from
these models, with filling factors being one or two orders of
magnitude below those derived from spectral fits; but this could
be the result of our present lack of knowledge of the trigger
mechanism. The spectrum synthesis from time-dependent hy-
drodynamic wind models will be the subject of a forthcoming
paper.
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Appendix A: inner and outer mass flow of the adiabatic shell

Here we derive an approximate expression which relates the
properties of an adiabatic SA shell with the jump in the mass
loss rate of the star at the time the shell is released.

Using (17), the mass flow Ṁ = 4πr2ρv through a sphere of
radius r can be written as

S ≡ ησV =
Ṁ

4πvfρ0
, (A1)

where S is the dimensionless mass flux. Since S and Ṁ are
constant outside the shell, we have (using ρ0 ≡ ρf,prr

2
f )

Ṁsource = Ṁin = 4πρf,prr
2
f v∞

vf

v∞
Sin = Ṁout

vf

v∞
Sin, (A2)

where Ṁsource is the mass flux of the source at r = 0, and Ṁin

(resp. Ṁout) is the mass flow ahead of the reverse (resp. forward)
shock. Using (18), we have

Ṁin

Ṁout
=

1
1− κf

Sin. (A3)

This ratio is infinite in SA since they used v∞ = 0 = Ṁout.
Applying the usual shock jump conditions, and assuming the

analytical SA solution in the neighborhood of the contact dis-
continuity (their Eq. 11, our Eq. 26) to apply over the whole
shell (see Fig. 7 for the accuracy of this approximation), we
have finally

Ṁin

Ṁout
=

1
1− κf

η3
r

Θ

(
1 +

12
5

[(ηc

ηr

)3
− 1

])
. (A4)

For sufficiently weak shocks κf ≈ 0 and ηr ≈ ηc ≈ 1, and the
last equation reduces to a trivial consequence of the presumed
pressure constancy inside the shell,

Ṁin

Ṁout
≈ Tpo,for

Tpo,rev
= Θ−1. (A5)

Appendix B: shock collisions in the outer wind

A SA shell, which is enclosed by two adiabatic shocks, expands
on its propagation through the wind: the front of the outer, for-
ward shock propagates faster than the shell center (i.e., the con-
tact discontinuity), whereas the front of the inner, reverse shock
propagates slower than the shell center. Therefore, if similar SA
shells follow upon each other, every forward shock should even-
tually overtake the reverse shock ahead of it. The question arises
(cf. §2) whether this leads to an outer, hot corona surrounding
the star. In this appendix we show that instead the shock collision
causes a sawtooth-like sequence of forward shocks to occur. Its
filling factor of hot gas is roughly comparable with that of the
inner SA shells. However, the forward shocks decay with radius,
even if the inner SA shocks have constant strength (at least long
before any mutual interactions). Since both the SA shells and
the forward shocks are similarity solutions asymptotically (i.e.,
for large distances between shells or shocks), this illustrates how
a shock collision can change the similarity parameter δ. In the
absence of detailed knowledge of the wind dynamics, we took
this in §2 as a justification to fix the value of δ from the outset.

We set up the following hydrodynamic test of multiple adi-
abatic shells. The initial data are for a stationary, spherical sym-
metric wind of constant velocity, and density ρ ∝ 1/r2. In the
SA solution, a single shell is created by a sudden jump in density
and speed at the source location r = 0 at time t = 0. To create
multiple shells instead, we use the step function

F (t) = H
(
tmod τ − 1

2τ
)
, (B1)

where H is the Heavyside function, and τ is the time interval
between the release of two shells. We apply as an inner boundary
condition

v(rmin, t) = v0[1− F (t)] + vsF (t),

ρ(rmin, t) = ρ0[1− F (t)] + ρsF (t). (B2)

The values for v0, ρ0 and vs, ρs are chosen from the ana-
lytical approximation (26) to the single-shell SA solution for
κf = 0.1, and equal post-shock temperatures, Θ = 1. We
chose vf = 1 and ρ0 = 1/r2

min. The temperature of the start
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Fig. 13. Hydrodynamic test calculation of multiple SA shells, with a
forward/reverse shock merger at r ≈ 0.45 (normalized units). Dots
indicate pre-shock gas, filled circles post-shock gas.

model, and also at the inner boundary over the course of time,
is T = 10−8(1− κf )2/γ (we use units k = mp = 1 here, so that
Tpo = 3

16κf
2), resulting in strong shocks of Mach number≈ 103.

Finally, τ = 0.05 is chosen, which results in a shock collision
at r ≈ 0.45. We use 5,000 logarithmically spaced grid points
from rmin = 0.01 to rmax = 1. As long as the relative speed of
forward and reverse shocks remains constant, the logarithmic
grid ensures a shell to be equally well resolved at all radii, since
both the grid distance and the shell extension grow∝ r. (In Fig.
13, already 1330 grid points lie in between rmin and the loca-
tion of the first reverse shock.) The model is followed up to a
time t = 4, corresponding to 4 flow times from the inner to the
outer grid boundary. However, even at t = 1 the flow structure
is almost identical to the one in Fig. 13. We used a time-explicit
hydrodynamics code which solves the continuity, momentum,
and energy equations in integrated form on a staggered grid by
applying van Leer (1977) advection. For details we refer to Reile
& Gehren (1991) and Feldmeier (1995).

We find from this simulation that the shock collision trans-
forms the inner shell sequence into an outer forward shock se-
quence, where the latter decays with radius. We now look into
this transformation in some more detail.

1. The use of a step function creates two forward facing
rarefaction waves (cf. Courant & Friedrichs 1948; Zel’dovich
& Raizer 1967) with a linear velocity law between subsequent
shells, seen at A or B in Fig. 13. The waves are separated from
each other by a region of v(r, t) = r/t, ρ(r, t) = const/t3 (the
density plateau at B). A forward shock occurs both at the tail of
the inner and at the head of the outer wave. (The shocks appear
to be isothermal since their cooling zones are not resolved. We
will not refer to these shocks any more in the following, but
only to the shell enclosing shocks.) Fluid particles propagate
through this whole domain from right to left. Notice that at A
the rarefaction waves and the shell shocks are still separated by
regions of stationary wind (v = const and ρ ∝ 1/r2), while at B
and beyond they are in contact.

2. The velocity law of the rarefaction waves causes a de-
creasing pre-shock speed at both shocks from about C on. The
shocks ‘project’ this velocity law into the post-shock domain,
cf. D and beyond. In this way, the forward shock is accelerated,
and the reverse shock is decelerated. At this stage, the shocks
move away from the shell center in a symmetric fashion.

3. However, from E on an asymmetry shows up between
forward shocks (getting weaker, and less accelerated) and re-
verse shocks (getting stronger, and more strongly decelerated).
The reason is that the forward shock propagates into a strongly
increasing density stratification, the reverse shock into a de-
creasing stratification.

4. From F to G, the reverse shock propagates through the
broad density minimum, and sweeps up the gas located there. H
and I show the forward and reverse shock just before merging.

5. Beyond K then, only forward shocks exist, which decay
with radius. Finally, notice that for the inner shell sequence a gas
element can undergo at most one shock transition by entering
a shell, while for the outer forward shock sequence every gas
element undergoes repeated shock transitions. This is indicated
in the velocity diagram of Fig. 13 by marking pre-shock gas
with dots, and post-shock gas with filled circles.

This sequence of events depends somewhat on the special
boundary conditions (step function) chosen. However, by apply-
ing instead a power law decline in source conditions after shell
throw-off, the shell sequence is again transformed into a forward
shock sequence, so that this result should hold quite generally.
Notice that the use of a power law leads to decelerated shells
which can no longer be described by the SA similarity variable
(16).
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