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Abstract. Spectral analysis of hot luminous stars requires adequate model atmospheres which take into account
the effects of NLTE and radiation driven winds properly. Here we present significant improvements of our approach
in constructing detailed atmospheric models and synthetic spectra for hot luminous stars. Moreover, as we regard
our solution method in its present stage already as a standard procedure, we make our program package WM-basic

available to the community (download is possible from the URL given below).
The most important model improvements towards a realistic description of stationary wind models concern:

(i) A sophisticated and consistent description of line blocking and blanketing. Our solution concept to this
problem renders the line blocking influence on the ionizing fluxes emerging from the atmospheres of hot
stars – mainly the spectral ranges of the EUV and the UV are affected – in identical quality as the synthetic

high resolution spectra representing the observable region. In addition, the line blanketing effect is properly
accounted for in the energy balance.

(ii) The atomic data archive which has been improved and enhanced considerably, providing the basis for a
detailed multilevel NLTE treatment of the metal ions (from C to Zn) and an adequate representation of
line blocking and the radiative line acceleration.

(iii) A revised inclusion of EUV and X-ray radiation produced by cooling zones which originate from the simu-
lation of shock heated matter.

This new tool not only provides an easy to use method for O-star diagnostics, whereby physical constraints on
the properties of stellar winds, stellar parameters, and abundances can be obtained via a comparison of observed
and synthetic spectra, but also allows the astrophysically important information about the ionizing fluxes of
hot stars to be determined automatically. Results illustrating this are discussed by means of a basic model grid
calculated for O-stars with solar metallicity. To further demonstrate the astrophysical potential of our new method
we provide a first detailed spectral diagnostic determination of the stellar parameters, the wind parameters, and
the abundances by an exemplary application to one of our grid-stars, the O9.5Ia O-supergiant α Cam. Our
abundance determinations of the light elements indicate that these deviate considerably from the solar values.

Key words. Line: formation – Stars: atmospheres – Stars: early type – Stars: mass-loss – Stars: individual: α Cam
– X-rays: stars

1. Introduction

Spectral analyses of hot luminous stars are of growing as-
trophysical interest as they provide a unique tool for the
determination of the properties of young populations in
galaxies. This objective, however, requires spectral obser-
vation of individual objects in distant galaxies. That this
is feasible has already been shown by Steidel et al. (1996)
who detected galaxies at high redshifts (z ∼ 3.5) and
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found that the corresponding optical spectra show the typ-
ical features usually found in the UV spectra of hot stars.
In order to determine stellar abundances and physical
properties of the most UV-luminous stars in at least the
Local Group galaxies via quantitative UV spectroscopy
another principal difficulty needs to be overcome: the di-
agnostic tools and techniques must be provided. This re-
quires the construction of detailed atmospheric models
and synthetic spectra for hot luminous stars. It is a con-
tinuing effort of several groups to develop a standard code
for solving this problem. Recent basic papers of the differ-
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ent groups concerning O-stars are Pistinner et al. 1999,
Aufdenberg et al. 1998, Schaerer and de Koter 1997,
Pauldrach et al. 1994, 1994a, 1998, Drew 1989, 1990,
and Abbott and Hummer 1985; and concerning WR-stars,
Hamann and Koesterke 1998 and Hillier and Miller 1998.

The most important output of this kind of model cal-
culation are the ionizing fluxes and synthetic spectra emit-
ted by the atmospheres of hot stars. As these spectra
consist of hundreds of not only strong, but also weak
wind-contaminated spectral lines which form the basis of a
quantitative analysis, and as the energy distribution from
hot stars is also used as input for the analysis of emis-
sion line spectra (e. g., of gaseous nebulae) which depend
sensitively on the structure of the emergent stellar flux, a
sophisticated and well tested method is required to pro-
duce these data sets accurately.

However, developing such a method is not straightfor-
ward, since modelling hot star atmospheres involves repli-
cating a tightly interwoven mesh of physical processes:
the equations of radiation hydrodynamics including the
energy equation, the rate equations for all important ions
(from H to Zn) including the atomic physics, and the ra-
diative transfer equation at all transition frequencies have
to be solved simultaneously.

The most complicating effect in this system is the
overlap of thousands of spectral lines of different ions.
Especially concerning this latter point we have made sig-
nificant progress in developing a fast numerical method
which accounts for the blocking and blanketing influence
of all metal lines in the entire sub- and supersonically ex-
panding atmosphere.

As we have found from previous model calculations
that the behavior of most of the UV spectral lines de-
pends critically on a detailed and consistent description
of line blocking and line blanketing (cf. Pauldrach 1987,
Pauldrach et al. 1990, Pauldrach et al. 1994, Sellmaier et
al. 1996, Taresch et al. 1997, Haser et al. 1998; this has also
been pointed out by Schaerer and Schmutz 1994, Schaerer
and de Koter 1997, and Hillier and Miller 1998), special
emphasis has been given to the correct treatment of the
Doppler-shifted line radiation transport, the correspond-
ing coupling with the radiative rates in the rate equations,
and the energy conservation.

In Section 3 we will demonstrate that the realistic and
consistent description of line blocking and blanketing and
the involved modifications to the models lead to changes in
the energy distributions, ionizing continua, and line spec-
tra with much better agreement with the observed spec-
tra when compared to previous, not completely consistent
models. This will obviously have important repercussions
for the quantitative analysis of hot star spectra.

In the next two sections we will first summarize the
general concept of our procedure and then discuss the cur-
rent status of our treatment of hydrodynamical expanding
atmospheres.

2. The general method

The basis of our approach in constructing detailed atmo-
spheric models for hot luminous stars is the concept of
homogeneous, stationary, and spherically symmetric ra-
diation driven winds, where the expansion of the atmo-
sphere is due to scattering and absorption of Doppler-
shifted metal lines (Lucy and Solomon 1970). In contrast
to previous papers of this series, the above approxima-
tions are now the most significant ones for the present
approach. These approximations are, however, quite re-
strictive, since only the time-averaged mean of the ob-
served spectral features can be described correctly by our
method. Nevertheless we believe that it is reasonable to
continue with the stationary, spherically symmetric ap-
proach and to improve its inherent physics, since the de-
tailed comparison with the observations, which is the only
way to demonstrate the reliability of this concept, leads
to promising results (cf. Section 4).

Before we describe the latest improvements in detail we
first summarize the principal features of our procedure of
simulating the atmospheres of hot stars. (For particular
points, a comprehensive discussion is also found in the
papers cited above.)

Figure 1 gives an overview of the physics to be treated
in various iteration cycles. A complete model atmosphere
calculation consists of three main blocks,

(i) the solution of the hydrodynamics
(ii) the solution of the NLTE-model (calculation of the

radiation field and the occupation numbers)
(iii) the computation of the synthetic spectrum

which interact with each other.

In the first step the hydrodynamics is solved in
dependence of the stellar parameters (effective temper-
ature Teff , surface gravity log g, stellar radius R∗ (de-
fined at a Rosseland optical depth of 2/3), and abun-
dances Z (in units of the corresponding solar values)) and
of pre-specified force multiplier parameters (k0, α0, δ0),
which are used for describing the radiative line acceler-
ation. In addition, the continuum force is approximated
by the Thomson force, and a constant temperature struc-
ture (T (r) = Teff ) is assumed in this step. In a second
step the hydrodynamics is solved by iterating the com-
plete continuum force gC(r) (which includes the opacities
of all important ions) and the temperature structure (both
are calculated using a spherical grey model), and the den-
sity ρ(r) and the velocity structure v(r). In a final outer
iteration cycle these structures are iterated again together
with the line force gL(r) obtained from the spherical NLTE
model. (New force multiplier parameters (k, α, δ), which
are depth dependent if required, are deduced from this
calculation.)1

The main part of the code consists of the solution of
the NLTE-model. In this step the radiation field (rep-

1 This latter step is currently not available for the download
version of the code; it will be made available for version 2.0.
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Fig. 1. Sketch of a complete model at-
mosphere calculation. Starting proce-
dures are presented in brackets. For a
discussion see the text.

resented by the Eddington-flux Hν(r) and the mean in-
tensity Jν(r)), the final temperature structure T (r), oc-
cupation numbers ni(r), and opacities χν and emissivi-
ties ην are computed using detailed atomic models for all
important ions. For the solution of the radiative trans-
fer equation the influence of the spectral lines (i. e., the
UV and EUV line blocking) is properly taken into account
in addition to the usual consideration of continuum opaci-
ties and source functions consisting of Thomson-scattering
and free-free and bound-free contributions of all impor-
tant ions. Moreover, the shock source functions produced
by radiative cooling zones which originate from a revised
simulation of shock heated matter are also included. For
the calculation of the final NLTE temperature structure

the line blanketing effect, which is a direct consequence of
line blocking, is considered by demanding luminosity con-
servation and the balance of microscopic heating and cool-
ing rates. The rate equations which yield the occupation
numbers contain collisional (Cij) and radiative (Rij) tran-
sition rates, as well as low-temperature dielectronic recom-
bination and Auger-ionization due to K-shell absorption
(considered for C, N, O, Ne, Mg, Si, and S) of soft X-ray
radiation arising from shock-heated matter. (Further de-
tails concerning the solution method of the NLTE-model
are described in Section 3.)

The last step consists of the computation of the syn-

thetic spectrum for the purpose of comparison with ob-
servations. In dependence of the occupation numbers, the
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opacities and the emissivities, a formal integral solution of
the transfer equation in the observer’s frame is performed
(cf. Puls and Pauldrach 1990).

As results of the iterative solution of this system of
equations we obtain not only the synthetic spectra and
ionizing fluxes which can be used in order to determine
stellar parameters and abundances, but also the hydrody-
namical structure of the wind (thus, constraints for the
mass-loss rate Ṁ and the velocity structure v(r) can be
derived).

3. The consistent NLTE model

The construction of realistic models for expanding atmo-
spheres requires a correct and completely consistent de-
scription of the main part of the simulation, the NLTE
model. In this regard, the most crucial point in our present
improved treatment is an exact description of line blocking
and blanketing.

The effect of line blocking – mainly acting in between
the He ii and the H i edge – is that it influences the ion-
ization and excitation and the momentum transfer of the
radiation field significantly. This of course has important
consequences for both the spectral line formation and the
dynamics of the expanding atmosphere. Nevertheless, it
is still not a common procedure to treat the line opaci-
ties and emissivities in the radiative transfer equation and
their back-reaction on the occupation numbers via the ra-
diative rates correctly. We will therefore first discuss the
effects of line blocking and blanketing for expanding at-
mospheres of hot stars in more detail.

The huge number of metal lines present in hot stars
in the EUV and UV attenuate the radiation in these
frequency ranges drastically by radiative absorption and
scattering processes (an effect known as line blocking).
Only a small fraction of the radiation is re-emitted and
scattered in the outward direction; most of the energy is
radiated back to the surface of the star producing there a
backwarming. Due to the increase of the Rosseland opti-
cal depth (τRoss) resulting from the opacities enhanced by
the line blocking, and, in consequence, of the temperature,
the radiation is redistributed to lower energies (this refers
to line blanketing). In principle these effects influence the
NLTE model with respect to:

(i) the radiative photoionization rates Rik,
(ii) the radiative bound-bound rates Rij,
(iii) the radiation pressure grad,
(iv) the energy balance.

The terms of the first two items are directly connected
to the radiation field, and line blocking in general reduces
them considerably. Concerning the third item, the blocked
incident radiation reduces the radiative acceleration term
in the inner part, whereas it can be enhanced in the outer
part due to multiple scattering processes (cf. Puls 1987
and references therein). In contrast to this, the energy
equation – last item – is mostly influenced by the impact
of the line opacities, and this blanketing effect results in

an increased temperature (steeper gradient) in the deeper
layers of the photosphere.

Although the method for treating blanketing effects is
well established for cold stars, where the atmospheres are
hydrostatic and where the assumption of LTE is justified
(cf. Kurucz 1979 and 1992), the work to develop an ade-
quate method for hot stars, where not only NLTE effects
are prominent, but where the atmospheres are also rapidly
expanding, is still under way. (For the various approaches
taken to this end, see the references listed in section 1.)
In this case – hot stars with expanding atmospheres – in
addition to the four items given above, the solution of
the radiative transfer also has to account for the lineshift
caused by the Doppler effect due to the velocity field. The
important effect of this point is that the velocity field in-
creases the frequential range which can be blocked by a
single line (see below). In the presence of a velocity field
the blocking effect is therefore more pronounced.

Concerning the basic requirements for calculating ad-
equate line opacities and source functions for expanding
atmospheres of hot stars we have to concentrate on the
following points:

(1) consistent NLTE occupation numbers,
(2) a complete and accurate line list in connection with

detailed atomic models,
(3) a proper concept for treating the line blocking with

due regard to the lineshifts in the wind, in the course
of which the method for solving the complete radia-
tive transfer including the spectral lines has to be
efficient with regard to computational time,

(4) a correct treatment of the influence of the blanketing
effect on the temperature structure,

(5) an adequate approximation of the EUV and X-ray
radiation produced by cooling zones of shock-heated
matter.

3.1. The concept of the solution of ionization and

excitation

It is obvious that ionization and excitation plays the major
role in calculating the emergent flux and spectrum of a
hot star. Therefore, a consistent and accurate description
of the occupation numbers is extremely important for a
realistic solution of the NLTE model.

Figure 2 presents a sketch of our iteration scheme
for the calculation of the occupation numbers. To save
more than a factor of 20 in computation time, the itera-
tion is performed in two major steps, which differ mainly
in the accuracy achieved by the methods employed: in
a pre-iteration, a modified opacity sampling technique
(method I) is used to take into account in the solution of
the radiation transfer the hundreds of thousands of spec-
tral lines in the UV and EUV. The main requirements for
this step are that it is sufficiently accurate for the itera-
tion to converge near the final solution, but fast enough to
make the model calculation feasible with today’s comput-
ers. In the final iterations, the radiation transfer (taking
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Fig. 2. Iteration scheme for the cal-
culation of the NLTE occupation num-
bers. An Accelerated Lambda Iteration

procedure is involved in the blocking
and blanketing cycles. Note that two
successive iteration cycles of different
quality (method I is used for at least
500–600 iterations, and then method II
for at least another 30–150 iterations)
are applied for the blocking and blan-
keting part of the model calculation
(see text).

into account the same lines as in method I) is calculated
with an exact solution of the transfer equation in the ob-
server’s frame (method II). The advantage of this method
is that it is free from all major approximations; its dis-
advantage is its comparatively high computational cost.
As the pre-iteration has already converged near the final
solution, however, only very few of these final iteration
steps are needed. Details are discussed in the following
paragraphs.

Note that both methods are used successively –
method I for at least 500–600 iterations, and then
method II for at least another 30–150 iterations – and
the same quantities are iterated (see Fig. 2). Both meth-
ods are of course based on the same radius and frequency
grids and take into account the same lines. The whole
purpose of method I is to give good starting values for the
final (real) iteration cycle using method II. In fact, as will
be shown below, the starting values produced by method I
turned out to be rather excellent.

In dependence of the abundances (Z), the density
(ρ(r)) and velocity (v(r)), and a pre-specified temperature
structure (Tg(r)) (see section 2), the occupation numbers
are determined by the rate equations containing collisional
(Cij) and radiative (Rij) transition rates. The most crucial
dependency of the rates is not the density, which is never-
theless important for the collisional rates and the equation
of particle conservation, but the velocity field which enters
not only directly into the radiative rates via the Doppler
shift, but also indirectly through the radiation field deter-
mined by the equation of transfer, which in turn is again
dependent on the Doppler shifted line opacities and emis-
sivities.

For the calculation of the radiative bound-bound tran-
sition probabilities Rij we make use of the Sobolev-plus-
continuum method (Hummer and Rybicki 1985; Puls and
Hummer 1998). Only for some weak second-order lines
in the subsonic region of the atmospheric layers where the
continuum is formed might this be just a poor approxima-
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tion (cf. Sellmaier et al. 1993). A more important point
of our procedure concerns the problem of self-shadowing
(cf. Pauldrach et al. 1998). This problem occurs because
the rate equations are not really solved simultaneously
with the radiative transfer, but instead in the framework
of the accelerated lambda iteration (ALI ), in which the ra-
diation field and the occupation numbers are alternately
computed (cf. Pauldrach and Herrero 1988). Hence, the
radiation field which enters into a bound-bound transi-
tion probability is already affected by the line itself, since
the line has also been considered for the blocking opac-
ities. This procedure will lead to a systematic error if a
line transition dominates within a frequency interval (see
section 3.3.1). The solution for correctly calculating the
bound-bound rates even in these circumstances is quite
simple and has been described by Pauldrach et al. (1998,
section 3.2).

The spherical transfer equation yields the radiation
field at 2,500 frequency points (see below) and at every
depth point, including the layers where the radiation is
thermalized and hence the diffusion approximation is a
proper boundary condition. The solution includes all rele-
vant opacities. In particular, the effects of wind and photo-
spheric EUV line blocking on the ionization and excitation
of levels are treated on the basis of 4 million lines, with
proper consideration of the influence of the velocity field
on the line opacities and emissivities and on the radiative
rates.

Regarding the latter point, the inclusion of line opaci-
ties and emissivities in the transfer equation, two different
concepts are employed for iterating the occupation num-
bers and the temperature structure until a converged ra-
diation field (Jν(r) and Hν(r)) is obtained. In a first step,
a pre-iteration cycle with an opacity sampling method is
used (method I). This procedure has the advantage of only
moderate computing time requirements, allowing us to
perform the major part of the necessary iterations with
this method. Its disadvantage, however, is that it involves
a few substantial approximations (cf. section 3.3). In a sec-
ond step, the final iteration cycle is therefore solved with
the detailed radiative line transfer (method II). Although
this procedure is extremely time-consuming, it has the
advantage that it is not affected by any significant ap-
proximations. With this second method, blocking factors
BJ (r, ν) and BH (r, ν) are calculated, defined as the ra-
tio of the radiative quantities obtained by considering
the total opacities and emissivities to those which include
only the corresponding continuum values (cf. Pauldrach et
al. 1996). BJ (r, ν) and BH (r, ν) are then used as multiply-
ing factors to the continuum quantities calculated in the
next NLTE-ALI-cycle with the current continuum opaci-
ties, in order to iterate the radiative rates Rij (both con-
tinuum and lines) and the resulting occupation numbers
until convergence (details are described in section 3.3).

In total, almost 1000 ALI iterations are required by the
complete NLTE procedure, divided into blocks of 30 iter-
ations each. (One iteration comprises calculation of the
occupation numbers and the radiation field.) Up to 31

of these iteration blocks are performed using the opacity
sampling method (method I), updating the temperature
structure and the Rosseland optical depth after each third
ALI-iteration, and the total opacities and emissivities af-
ter each iteration block. All following iterations are then
performed using method II, updating temperature, optical
depth, and opacities and emissivities as before, and addi-
tionally calculating the blocking factors with the detailed
radiative transfer after each iteration block. (Several it-
eration blocks using method II can be executed, but 1 is
usually sufficient – see below.) In this phase the radiative
transfer solved in the ALI-iterations within one iteration
block is just based on continuum opacities and emissivi-
ties, and the blocking factors are applied to get the cor-
rect radiative quantities used for calculating the radiative
rates.

As a final result of the complete iteration cycle, the
converged occupation numbers, the emergent flux, and the
final NLTE temperature structure are obtained.

3.2. The atomic models

It is obvious that the quality of the calculated occupation
numbers and of the synthetic spectrum is directly depen-
dent on the quality of the input data. We have therefore
extensively revised and improved the basis of our model
calculations, the atomic models.

Up to now the atomic models of all of the important
ions of the 149 ionization stages of the 26 elements con-
sidered (H to Zn, apart from Li, Be, B, and Sc) have
been replaced in order to improve the quality. This has
been done using the Superstructure program (Eissner et
al. 1974; Nussbaumer and Storey 1978), which employs
the configuration-interaction approximation to determine
wave functions and radiative data. The improvements in-
clude more energy levels (comprising a total of about 5,000
observed levels, where the fine structure levels have been
“packed” together2) and transitions (comprising more
than 30,000 bound-bound transitions for the NLTE cal-
culations and more than 4,000,000 lines for the line-force
and blocking calculations3,4, and 20,000 individual transi-

2 Note that artificial emission lines may occur in the blocking
calculations if the lower levels of a fine structure multiplet are
left unpacked but the upper levels of the considered lines are
packed – the fine structure levels of an ionization stage should
either be all packed or all unpacked.

3 Note further that the consistency of the model calculation
requires that the wavelength of the bound-bound transition
connecting packed levels in the NLTE calculations to be iden-
tical to the wavelength of the strongest component of the mul-
tiplet considered in the blocking calculations in order to solve
the line radiative transfer and especially the problem of self-

shadowing properly.
4 The Superstructure calculations involve many more excited

levels than actually used in the NLTE calculation. Our line list
does, however, include transitions to such highly excited levels
above our limit of considering the level structure; occupation
numbers of these upper levels are estimated using the two-level
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Table 1. Summary of revised atomic data calculated with Superstructure. In columns 2 and 3 the number of levels used in the
NLTE calculations are given in packed and unpacked form. Columns 4 and 5 list the number of lines used in the rate equations
and for the line-force and blocking calculations.

levels lines
Ion packed unpacked rate eq. blocking

C ii 36 73 284 11005
C iii 50 90 520 4406
C iv 27 48 103 229
C v 5 7 6 57

N iii 40 82 356 16458
N iv 50 90 520 4401
N v 27 48 104 229
N vi 5 7 6 57

O ii 50 117 595 39207
O iii 50 102 554 24506
O iv 44 90 435 17933
O v 50 88 524 4336
O vi 27 48 102 231

Ne iv 50 113 577 4470
Ne v 50 110 534 2664
Ne vi 50 112 343 1912

Mg iii 50 96 529 2457
Mg iv 50 117 589 3669
Mg v 50 100 547 3439
Mg vi 21 44 54 305

Al iv 50 96 529 2523
Al v 50 117 588 18317
Al vi 19 37 41 153

Si iii 50 90 480 4044
Si iv 25 45 90 245
Si v 50 98 531 3096
Si vi 50 116 596 3889

P v 25 45 90 245
P vi 14 26 41 1096

S v 44 78 404 903

levels lines
Ion packed unpacked rate eq. blocking

S vi 18 32 59 142
S vii 14 26 39 1031

Ar v 40 86 328 3007
Ar vi 42 93 400 1335
Ar vii 47 87 483 2198
Ar viii 15 27 41 111

Mn iii 50 141 364 175593
Mn iv 50 124 467 131821
Mn v 50 124 508 61790
Mn vi 13 25 35 87

Fe ii 50 148 405 227548
Fe iii 50 126 246 199484
Fe iv 45 126 253 172902
Fe v 50 124 451 124157
Fe vi 50 138 452 60458
Fe vii 22 62 91 10123
Fe viii 42 96 300 4777

Co iii 50 141 469 200637
Co iv 41 97 70 146252
Co v 45 126 253 182780
Co vi 43 113 317 124053
Co vii 34 80 246 50270

Ni iii 40 102 281 131508
Ni iv 50 146 528 183267
Ni v 41 97 70 179921
Ni vi 45 126 253 186055
Ni vii 43 113 317 123386
Ni viii 34 80 246 43778

Cu iv 50 124 477 17466
Cu v 50 146 527 30457
Cu vi 50 126 246 10849

tion probabilities of low-temperature dielectronic recom-
bination and autoionization).

Additional line data were taken from the
Kurucz (1992) line list: approximately 20,000 lines
have been added to the Superstructure data for ions
of Mn, Fe, Co, and Ni. These concern transitions to
even higher levels than those having been calculated
with Superstructure, but which might nonetheless be
of significance in the blocking calculations. From the
Opacity Project (cf. Seaton et al. 1994; Cunto and
Mendoza 1992) another 4,466 lines have been included,
as well as photoionization cross-sections (almost 2,000
data sets have been incorporated). Collisional data have
become available through the IRON project (see Hummer
et al. 1993) – almost 1,300 data sets have been included.

approximation on the basis of the (known) occupation number
of the lower level.

Table 1 gives an overview of the ions affected by the
improvements. (Users of the program package WM-basic
should note that the model calculations will become incon-
sistent if the atomic data sets are changed haphazardly by
those who are not familiar with the source code.)

3.3. The treatment of line blocking

As the thermal width of a UV metal line covers just a
few mÅ, a simple straightforward method would require
considering approximately 107 frequency points in order
to resolve the lines in the spectral range affected by line
blocking. Such a procedure would lead to a severe problem
concerning the computational time. The alternatives are
either to calculate the complete radiative transfer in the
comoving frame – again a time-consuming procedure – or
to use a tricky method which saves a lot of computation
time through the application of some minor approxima-



8 A.W. A.Pauldrach et al.: NLTE line blocking and blanketing

tions (method I), dropping these approximations in the
final iteration steps (method II) in order to come to a
realistic solution. Our treatment described here uses the
second approach.

Although frequently applied, a method using opac-
ity distribution functions (ODF s) (cf. Labs 1951;
Kurucz 1979), where the opacities are rearranged within
a rough set of frequency intervals in such a way that a
smoothly varying function is obtained which conserves
the statistical distribution of the opacities, is not appli-
cable in our case, since there is no appropriate way to
treat the lineshift in the wind, and due to the rearrange-
ment of the opacities the frequential position of the lines
is changed. This, however, prevents a correct computation
of the bound-bound transitions used for the solution of the
statistical equilibrium equations.

The approach best suited for our purpose in the
first step (method I) is the opacity sampling technique
(cf. Peytremann 1974; Sneden et al. 1976; Anderson 1991)
which compared to the ODF-method is computationally
a bit more costly, but does not suffer from the limitations
mentioned above. This method allows us to account for
the lineshift in the wind and the correct influence of line
blocking on the bound-bound transitions (cf. Section 3,
item (ii)), since it preserves the exact frequential position
of the lines.

3.3.1. The opacity sampling method (method I)

Following the idea of the opacity sampling, a representa-
tive set of frequency points is distributed in a logarithmic
wavelength scale over the relevant spectral range, and the
radiative transfer equation is solved for each point. (For O-
stars the actual range depends on Teff ; for hot objects the
lower value is at ≈ 90 Å and for cooler objects the upper
value is at 2000 Å; note that accurate ionization calcula-
tions require extending the line blocking calculations to
the range shortward of the He ii edge – cf. Pauldrach et
al. 1994.)

In this way the exact solution is reached by increasing
the number of frequency points. A smooth transition is
obtained when the number of frequency points is increased
up to the number – 107 – which is required to resolve the
thermal width of the UV lines. It is obvious however that
convergence can be achieved already with significantly less
points (see below). Furthermore, special blocking effects
on selected bound-bound transitions can be investigated
more thoroughly by spreading additional frequency points
around the line transition of interest.

In the following subsection we will investigate how
many sampling points are required in order to represent
the physical situation in a correct way.

The influence of line blocking on the photoionization inte-
grals. The most important effect of line blocking on the

Fig. 3. Mean radiation field Jν together with the photoioniza-
tion cross section σik of the ground state of H (in arbitrary
units).

Fig. 4. Accuracy of the normalized photoionization integral
Rik of the groundstate of H in dependence of an increasing
number of sampling points within the Lyman continuum.

emergent spectrum is the influence on the ionization struc-
ture via the photoionization integrals

Rik = 4π

∫

Jν

hν
σik(ν) dν. (1)

This can be verified from Fig. 3 where it is shown that
the mean radiation field Jν changes rapidly over the fre-
quency interval covered by a typical smooth bound-free
cross section σik – several 100 Å are affected. (Note that
dielectronic resonances which may occur in addition are
not shown here.)

It is obvious from Fig. 3 that the photoionization rates
are sensitive functions of the blocking influence on Jν , and
hence, on the number of sampling points in the relevant
frequency range.
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In order to determine the number of sampling points
required for an accurate description of the bound-free
(photoionization) and bound-bound (line) radiative rates
we performed empirical tests by calculating models with
an increasing number of sampling points. Representative
for the behavior of the radiative rates, and thus the oc-
cupation numbers, Fig. 4 shows the dependence of the
normalized photoionization integral of the ground state of
hydrogen on the number of frequency points. For small
numbers of sampling points there is no systematic trend,
and the rates converge for higher numbers of sampling
points. We conclude that 1,000 sampling points within
the Lyman continuum on a logarithmic wavelength scale
guarantee a sufficient accuracy of about 1 to 2 percent. By
means of a separate investigation Sellmaier (1996) showed
the given number of sampling points to be reasonable,
since it reproduces the actual line-strength distribution
function quite well.

The treatment of the lineshift. The total opacity at a cer-
tain sampling frequency ν is given by adding the line opac-
ity χlb to the continuum opacity χc

χν = χlb(ν) + χc(ν), (2)

where χlb is the sum over all (integrated) single line opac-
ities χl multiplied by the line profile function ϕl(ν)

χlb(ν) =
∑

lines

χlϕl(ν). (3)

Here χl is

χl =
hν0

4π
(niBij − njBji) , (4)

and the analogous expression for the emissivity is

ηl =
hν0

4π
njAji. (5)

(Bij , Bji, und Aji are the Einstein coefficients of the line
transition at the frequency ν0, and h is Planck’s constant.)

In the static part of the atmosphere a line’s opacity
covers with its (thermal and microturbulent) Doppler pro-
file ϕD only a very small interval around the transition
frequency ν0 (illustrated in Fig. 5 on the right hand side
of both figures; note that with regard to our sampling grid
about 40 percent of the available lines are treated in this
part). The effect of these lines on the radiation field is nev-
ertheless considerable (cf. Fig. 3), if the lines are strong
enough to become saturated.

In the expanding atmospheres of hot stars the effect
of line blocking is enhanced considerably in the super-
sonic region due to the nonlinear character of the radiative
transfer. A velocity field v(r) enables the line to block the
radiation also at other frequencies ν = ν0(1+v(r)/c), i. e.,
the Doppler shift increases the frequency interval which
can be blocked by a single line to a factor of ≈ 100. On
the other hand, the velocity field reduces the spatial area

Fig. 5. upper panel: simply shifting the line profile along
νCMF (represented by the curve) at each radius grid point
(standard opacity sampling) causes the line to be missed at
most frequency points; lower panel: this problem is solved by
assuming a boxcar profile for each depth point with a width
corresponding to the difference in Doppler shift between two
successive radius points (“Doppler-spread opacity sampling”).

p

z

to observer

θ

Fig. 6. (p, z)-geometry for the spherically symmetric radia-
tive transfer. For any given depth point, a different Doppler
shift must in principle be considered for every p-ray, since the
projected velocity varies with cos θ. However, as no analogy to
the boxcar method exists in this case, in our opacity sampling
method we take the Doppler shift of the central ray as being
representative for all other rays (see text).

where a photon can be absorbed by a line. If a line is opti-
cally thick, however, the effect of blocking will ultimately
be increased compared to a static photosphere.

The lineshift due to the velocity field is applied to the
individual line opacities before the summation in eq. 3 is
carried out at each sampling and depth point (otherwise
the effect of the lineshift would be underestimated with
respect to the ratio of line width to sampling distance – see
below). However, in our approach this is done by applying
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the Doppler shift of the radial ray to all p-rays (see Fig. 6),
ignoring the angular dependence of the Doppler shift (see
below). Apart from the intrinsic character of the sampling
method this is the most restrictive approximation in our
first iteration cycle. Nevertheless, the main effect of the
frequency shift due to the expanding wind – increase of
the frequential range of line absorption – is included, and
that is what has to be iterated in this first cycle.

From the upper panel of Fig. 5 it is obvious that if the
line opacity is simply shifted along the comoving frame
frequency (νCMF) to every radius point successively, many
frequency points will miss the line, since the radius grid is
too coarse to treat large lineshifts in the observer’s frame.
This behaviour is corrected by convolving the intrinsic
Doppler profile of the line with a boxcar profile ϕ∆v repre-
senting the velocity range around each radius point (Fig. 5,
lower panel).

The boxcar profile is the mean profile obtained by con-
sidering the velocity shifts ∆v of the two corresponding
intermesh points (ν1, ν2) on both sides of the regarded ra-
dius grid point in the way that the gaps in the frequency
grid are closed. This can be expressed in terms of the
Heaviside function θ:

ϕ∆v(ν) =
θ(ν2 − ν)− θ(ν1 − ν)

2(ν2 − ν1)
(6)

ν1 and ν2 are the observer’s frame frequencies belonging to
the velocities of two successive radius points (r1 and r2),
i. e., ν1,2 = ν0(1 + v(r1,2)/c). Assuming thermal Doppler
broadening for the intrinsic line profile,

ϕD(ν) =
e−x2

√
π∆νD

with x =
ν − ν0

∆νD
, (7)

where ∆νD is the thermal Doppler width, the convolution
(ϕD ⊗ ϕ∆v)(ν) results in the final profile function

φ(ν) = (ϕD ⊗ ϕ∆v)(ν) =
erf(x2 − x) − erf(x1 − x)

2(x2 − x1)∆νD
. (8)

This profile can be used for the entire sub- and supersonic
region. For ∆v < vtherm it gives, as a lower limit, the or-
dinary opacity sampling, and for sufficiently high velocity
gradients (∆v > vtherm) the integration over a radius in-
terval represents the Sobolev optical depth (τSob(r)) of a
local resonance zone for a radial ray

∆τ =

∫ r2

r1

χl · φ(ν) dr

≈ χl ·
1 − (−1)

2(x2 − x1) · ∆νD
· (r2 − r1)

= χl ·
r2 − r1

v2 − v1
·

c

ν0

≈ χl ·
c

ν0
·
(

dv

dr

)−1

= τSob(r). (9)

At sufficiently high velocity gradients all lines are included
in the radiative transfer if the sampling grid is fine enough

(see also Sellmaier 1996). In this case our Doppler-spread
opacity sampling method therefore becomes an exact solu-
tion.

In summary, our Doppler-spread sampling technique
makes opacity sampling usable even at large velocity gra-
dients where the standard sampling would miss a line at
many frequency points. Broadening of the line with the
boxcar profile does not overestimate the line blocking ef-
fect, since the convolution (eq. 8) preserves the frequency-
integrated line strength. Rather, the Sobolev optical depth
(eq. 9) is the upper limit for the optical thickness of a
blocking line as treated with the boxcar profile. The sta-
tistical character inherent in opacity sampling is greatly
diminished, since at high velocity gradients all available
lines are considered.

Furthermore, broadening the lines leads neither to an
increased nor a decreased line overlap, since the broaden-
ing only spreads a line over the frequencies corresponding
to the Doppler shifts between one depth point and the
next one. If lines overlap through this broadening at a
certain radius grid point, they must also overlap in real-
ity (see Fig. 10) in the interval between that radius point
and the adjacent one, because the basic relationship be-
tween frequency shift and radius (via the velocity field) is
independent of the resolution of the radius grid.

Essentially, the broadening projects the sharply
peaked line opacities and emissivities inside a radial in-
terval, which would otherwise be overlooked in the radi-
ation transfer in the discretized scheme, onto a point at
the edge of that interval so that the radiation transfer on
the discretized radius grid can be performed correctly. For
any particular radius interval and spectral line, this affects
all frequencies in the interval determined by the Doppler
shifts corresponding to the velocities at the edges of the ra-
dial interval in question, irrespective of the number of fre-
quency points that actually lie in that frequency interval.
Increasing this number of frequency points does not influ-
ence this geometric configuration5, whereas increasing the
radial resolution improves the quality of this procedure,
finally converging to the exact solution (cf. method II).

In principle, one would have to account for the angular
variation (see Fig. 6) of the Doppler shift in a similar man-
ner, but as no analogy to the boxcar profile method exists
in this case, as mentioned above we simply apply the (cor-
rectly calculated, radially dependent) opacities (χlb(ν, r))
of the central p-ray to the other p-rays, regarding these
opacities as being representative. A welcome result of this
simplification is the fastness of the method, a very impor-
tant consideration in this iteration cycle.

5 Note that the minimum resolution required for the fre-
quency grid per se is determined by the Doppler spread be-
tween the radius grid points, in order to intercept a line at
several radius points in succession. As stated above, at suf-
ficiently high velocity gradients all lines are included in the
radiative transfer for approximately 1000 frequency points in
the Lyman continuum. Moreover, as illustrated in Fig. 4, the
chaotic behavior for less than about 1000 frequency points van-
ishes in this case.
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Fig. 7. Logarithm of the ionization fractions of N iii (upper

panel), N iv (middle panel), and Nv (lower panel) versus den-
sity and iteration block number for an O supergiant model
(Teff = 29 000 K, log g = 3.0, R∗/R� = 27.0). The region be-
tween two successive contour lines (one iteration block) corre-
sponds to 30 iterations.

Concerning our WM-basic program package running
on a normal scalar processor, however, the method is still
not fast enough (a model calculation would require an
amount of computing time of about 20 hours). The rea-
son is that the Rybicki-method which is used in this step
for the solution of the second-order form of the equation
of transfer (cf. Mihalas 1978) requires more than 80% of
the computing time of a model calculation. (Note that the
Rybicki-method is applied in each iteration just once per
frequency point; in order to improve the accuracy, the ra-
diative quantities are then further iterated internally by
using the moments equation of transfer (cf. Mihalas 1978).
Because of strong changes in the opacities and emissivi-
ties within the NLTE iteration cycle it is necessary to start
with the Rybicki-method nevertheless.) We have therefore
rethought the solution concept of the Rybicki-scheme and
developed a method which is 10 times faster on a vector
processor and 3 to 5 times faster on a scalar processor
– the actual factor depends on the quality of the level-2
blas functions available with professional compiler pro-
grams and which do most of the work in our method (see
Appendix A).

In order to illustrate the behaviour of convergence of
our method I, the ionization fractions of N iii, iv, and v

are shown versus density and the iteration block number
in Fig. 7 for the first 600 iterations as an example. As dis-
played, the model converges within 400 iterations – the re-
maining iterations are required to warrant the luminosity
conservation (see section 3.4). The steep increase of Nv in
the wind part results from the EUV and X-ray radiation
produced by shock-heated matter (see section 3.5).

We finally note that first results obtained with a ver-
sion of this procedure as described here so far have already
been published. Sellmaier et al. (1996) showed that their
NLTE line-blocked O-star wind models solve the long-
standing Ne iii problem of H ii-regions for the first time,
and Hummel et al. (1997) carried out NLTE line-blocked
models for classical novae.

Special problems. From first test calculations performed
in the manner described we recognized and solved two
additional nontrivial problems:

The first problem concerns the artificial effect of self-
shadowing (see above) which occurs because the incident
intensity used for the calculation of a bound-bound transi-
tion that enters into the rate equations is already affected
by the line transition itself, since the opacity of the line has
been used for the computation of the radiative quantities
in the previous iteration step. If the lines contained in a
frequency interval are of almost similar strength, this is no
problem, since the used intensity Iνn

(r) calculated at the
sampling point represents a fair mean value for the true
incident radiation of the individual lines in the interval. If
however, a line has a strong opacity with a dominating in-
fluence in the interval, the intensity taken at the sampling
point for the same bound-bound transition in the radia-
tive rates is much smaller than the true incident radiation
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Fig. 8. Part of the synthetic EUV spectrum (200–1600 Å)
of the S-45 supergiant model (Teff = 45000 K, log g = 3.6,
R∗/R� = 18.0) calculated with the opacity sampling method
and the differential form of the transfer equation. The upper
panel shows the spectrum obtained with the standard Feautrier
coefficients, which produces several strong artificial emission
lines. The lower panel shows the correct spectrum resulting
with our modified Feautrier coefficients.

for this line, because the line has already influenced this
value considerably. In consequence the source function of
this line is underestimated and the radiative processes –
the scattering part is mostly affected – are not correctly
described in the way that the line appears systematically
too weak.

The solution to this problem is rather simple: in calcu-
lating the bound-bound rates of the dominating lines, we
use an incident intensity which is independent of the lines
in the considered interval (cf. Pauldrach et al. 1998).

The second problem involves the discretization of the
transfer equation in its differential form, for computing the
radiative quantities (Feautrier method). In the standard
approach (see, for example, Mihalas 1978) the equation of
transfer is written as a second-order differential equation
with the optical depth τ as the independent variable:

d2u

dτ2
= u − S, (10)

where S is the source function and u = 1
2 (I+ + I−), with

I+ and I− being the intensities in positive and negative τ
direction along the ray considered.

This differential equation is then converted to a set of
difference equations, one for each radius point i on the ray,

d2u

dτ2

∣

∣

∣

∣

τi

≈

du
dτ

∣

∣

τ
i+ 1

2

− du
dτ

∣

∣

τ
i− 1

2

τi+ 1
2
− τi− 1

2

(11)

≈
ui+1 − ui

τi+1 − τi
− ui − ui−1

τi − τi−1
1
2
(τi+1 + τi) − 1

2
(τi + τi−1)

, (12)

resulting in a linear equation system

aiui−1 + biui + ciui+1 = Si (13)

with coefficients

ai = −
(

1
2
(τi+1 − τi−1)(τi − τi−1)

)−1

ci = −
(

1
2
(τi+1 − τi−1)(τi+1 − τi)

)−1

bi = 1 − ai − ci,

(14)

(and appropriate boundary conditions). This linear equa-
tion system has a tridiagonal structure and can be solved
economically by standard linear-algebra means.6 Note
that the equations contain only differences in τ , which can
easily be calculated from the opacities and the underlying
z-grid (cf. Fig. 6) as

τi+1 − τi = 1
2
(χi+1 + χi)(zi+1 − zi), (15)

with χi being the opacity at depth point i.
The equation systems are well-behaved if the opaci-

ties and source functions vary only slowly with z. Caution
must be taken if this cannot be guaranteed, for exam-
ple, whenever a velocity field is involved at strong ioniza-
tion edges or with the opacity sampling method at strong
lines, since the velocity field shifts the lines in frequency,
causing large variations of the opacity from depth point to
depth point for a given frequency. In particular, a problem-
atic condition occurs if a point with a larger-than-average
source function Si and low opacity χi borders a point with
a high opacity χi+1 (and low or average source function
Si+1). In reality, this large source function should have lit-
tle impact, since it occurs in a region of low opacity, and
thus the emissivity is small. However, the structure of the
equations is such that the emission is computed to be on
the order of

∆I ≈ S · ∆τ

≈ 1
2(Si+1 + Si) · 1

2 (χi+1 + χi)(zi+1 − zi),
(16)

where, if the other quantities are comparatively small
(in accordance with our assumptions), the term Siχi+1

6 In practice, a Rybicki-type scheme (cf. Mihalas 1978; and
Appendix A, this paper) is used for solving the equation sys-
tems for all p-rays simultaneously, since the source function
contains a scattering term (see eq. A.4) which redistributes
the intensity at each radius shell over all rays intersecting that
shell.
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dominates,7 leading to artificially enhanced emission. In
Figure 8 (upper panel) we show the exaggerated emission
of the strongest spectral lines in the emergent flux of a
stellar model computed using this standard discretization,
leading to false results. Even a simple example can serve
to illustrate this effect, as demonstrated in Appendix B.

However, with a subtle modification of the equation
system coefficients the method can nevertheless be sal-
vaged. The subtle point involves writing the transfer equa-
tion as an equation not in τ , but in z for derivation of the
coefficients, since only this formulation treats correctly the
z-dependence of χ:

1

χ

d

dz

(

1

χ

du

dz

)

= u − S. (17)

(Note that the grid should still be spaced so as to cover τ
more-or-less uniformly.) Again approximating the differ-
ential equation with a system of differences we obtain

1

χi

(

d

dz

(

1

χ

du

dz

))∣

∣

∣

∣

i

≈

≈
1

χi

(

1
χ

du
dz

)∣

∣

∣

i+ 1
2

−
(

1
χ

du
dz

)∣

∣

∣

i−1
2

zi+ 1
2
− zi− 1

2

(18)

≈
1

χi

1
χi+1,i

ui+1 − ui

zi+1 − zi
− 1

χi,i−1

ui − ui−1
zi − zi−1

1
2 (zi+1 + zi) − 1

2(zi + zi−1)
, (19)

so that

ai = −
(

1
2χi(zi+1 − zi−1) · χi,i−1(zi − zi−1)

)−1

ci = −
(

1
2χi(zi+1 − zi−1) · χi+1,i(zi+1 − zi)

)−1

bi = 1 − ai − ci.

(20)

Even though these coefficients seem not too different from
those of the standard method, their impact on the com-
puted radiation field is significant, as witnessed by the
drastic improvement in the emergent flux shown in the
lower panel of Figure 8. The crucial difference in the co-
efficients is that the first factor in a and c now contains
only the local opacity. (We naturally make the correspond-
ing changes in the coefficients of the moments equation as
well.)

Test calculations have shown that for the second factor
in the coefficients the geometric mean (an arithmetic mean
on a logarithmic scale)

χi+1,i =
√

χi+1 · χi (21)

gives good results, as demonstrated in Figure 9, where the
spectrum of a model computed with the opacity sampling
method is compared to that of our detailed radiative line
transfer, described in the next section. Considering the
relative coarseness of the opacity sampling method, and

7 The physical reason for the failure of the system is that the
source function only has meaning relative to its corresponding
opacity. Multiplying the source function from one point with
the opacity at another point is complete nonsense.
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Fig. 9. Comparison of the synthetic EUV spectrum (200–
1600 Å) of the S-45 supergiant model (Teff = 45000 K, log g =
3.6, R∗/R� = 18.0) calculated with the Doppler-spread opac-

ity sampling method (thick line) and the detailed method (thin
line) on the same frequency grid. Due to simplifications in our
implementation the sampling method cannot produce P Cygni
emission; nevertheless it provides an extremely good basis for
the final iterations using the detailed method.

the fact that the detailed line transfer suffers none of the
approximations of the sampling method, the agreement is
indeed remarkable. Note again that through our single-p-
ray approximation for the sampling opacities (see above),
our method I (opacity sampling) cannot produce P Cygni
profiles, since the P Cygni emission is a direct result of the
different Doppler shifts of a particular spectral line along
different rays.

3.3.2. The detailed radiative line transfer (method II)

The detailed radiative line transfer (method II), used for
the final iterations, is an exact solution of the transfer
equation in the observer’s frame, and is completely equiv-
alent to a comoving frame solution. It removes the two
most significant simplifications of our opacity sampling
method (method I), i. e., it accounts for:

(1) Correct treatment of the angular variation of the
opacities,

(2) Spatially resolved line profiles8 (implying correct
treatment of multi-line effects).

Whereas in method I the former is completely ignored,
the lack of spatial resolution was already compensated for
to a large extent through the use of our Doppler-spread
sampling. (Multi-line interaction is partly included in our
method I, but without regard for the sign of the Doppler
shift (using just that of the central ray), and without re-

8 Note that this will not by itself solve the problem of self-
shadowing, since that is an intrinsic property of any method
using an “incident radiation” in solving for the bound-bound
radiative rates with a continuum already affected by the transi-
tion being considered. In the iteration cycle using method II we
therefore also have to apply our correction for self-shadowing.
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Fig. 10. Diagram (not to scale) illustrating the basic relationship of the rest-frame frequencies of spectral lines (νCMF) to
observer’s frame frequency (νobs) for one particular (non-core) p-ray in the spherically symmetric geometry (cf. Figure 6).
Shown are two spectral lines which get shifted across the observer’s frame frequency by the velocity field in the wind. The
dots represent the stepping points of the adaptive microgrid used in solving the transfer equation in the detailed radiative line
transfer.

gard for the order of the lines along the ray within a ra-
dius interval, as the Doppler-spread sampling effectively
“maps” the lines to the nearest radius point.)

With all major approximations removed, the biggest
shortcoming that remains in method II is that only
Doppler broadening is considered for the lines, as Stark
broadening has not yet been implemented. However, this
is of no relevance for the UV spectra, as it concerns only
a few lines of Hydrogen and Helium in the optical fre-
quency range. It will, however, be important for our fu-
ture planned analysis of the optical H and He lines. (Stark
broadening is not considered in the sampling method ei-
ther, but here this is of minor significance, as all other
approximations are much more serious.)

In contrast to our method I, where the symmetry and
our assumption of only radially (not angular) dependent
Doppler shifts allowed solving the transfer equation for
only one quadrant,9 a correct treatment of the both red
and blue Doppler-shifted line opacities (see Figure 6) re-
quires a solution in two quadrants10 (corresponding to,
from the observer’s viewpoint, the front and back hemi-
spheres; the rotational symmetry along the line-of-sight is
taken care of through the angular integration weights).

The method employed is an adaptation of the one de-
scribed by Puls and Pauldrach (1990), using an integral
formulation of the transfer equation and an adaptive step-
ping technique which ensures that the optical depth in
each step (“microgrid”) does not exceed ∆τ = 0.3, so
that the radiation transfer in each micro-interval can be

9 The 2nd-order differential representation of the transfer
equation accounts for both the left- and right-propagating ra-
diation simultaneously, the unknowns being the symmetric av-
erages of the two.
10 A one-quadrant solution is also possible, but requires both
a red- and a blue-shifted opacity for each (p, z)-point and sep-
arate treatment of the left- and right-directed radiation, thus
being equivalent in computational effort to the two-quadrant
solution that solves for radiation going in only one direction.

approximated to high accuracy by an analytical formula
assuming a linear run of opacity and emissivity between
the micro-interval endpoints:

I(τ0) =

∫ τn

τ0

S(τ )e−(τ−τ0 ) dτ + I(τn)e−(τn−τ0), (22)

where the integral is performed as a weighted sum on the
microgrid
∫ τn

τ0

S(τ )e−(τ−τ0 ) dτ =

=

n−1
∑

i=0

(

e−(τi−τ0)

∫ τi+1

τi

S(τ )e−(τ−τi ) dτ

)

, (23)

each “microintegral” being evaluated as
∫ τi+1

τi

S(τ )e−(τ−τi ) dτ = w
(a)
i S(τi) + w

(b)
i S(τi+1) (24)

with weights

w
(a)
i = 1 −

1 − e−∆τi

∆τi

, w
(b)
i =

1 − e−∆τi

∆τi

− e−∆τi (25)

where ∆τi = τi+1 − τi. To accurately account for the
variation of the line opacities and emissivities due to
the Doppler shift, all line profile functions ϕl (cf. eq. 3)
are evaluated correctly for the current microgrid-(z, p)-
coordinate on the ray, thus effectively resolving individual
line profiles. Only the slowly-varying occupation numbers
(or equivalently, the integrated, frequency-independent
line opacities χl and emissivities ηl) and the velocity field
are interpolated between the regular radius grid points.

Figure 10 depicts schematically the relationship be-
tween the Doppler-shifted frequencies of spectral lines
(which are constant in the comoving frame) and the ob-
server’s frame frequency for which the radiative transfer is
being calculated. The figure also illustrates the line over-
lap in accelerating, expanding atmospheres: lines clearly
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Fig. 11. Flux of our S-29 supergiant model (Teff = 29000 K,
log g = 3.0, R∗/R� = 27.0) after 1 and 5 iteration blocks of
method II.
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Fig. 12. The final – completely converged – spectrum from
200 to 2300 Å of the S-45 supergiant model. The observable
UV region redward of the Lyman edge has been computed
with a high resolution (for comparison with observed spectra).

separated in the comoving frame (slices parallel to the
(ν, χ)-plane) overlap in the observer’s frame (slice parallel
to the (z, χ)-plane at νobs) due to large Doppler shifts
many times the intrinsic (thermal and microturbulent)
linewidth. The areas shaded in dark gray correspond to
the spatially resolved Sobolev resonance zones of the two
lines for this particular observer’s frame frequency and
p-ray. Note that the dimensions are not to scale, i. e., the
intrinsic width of the lines, and consequently the thickness
in z of the resonance zones, has been greatly exaggerated
in relation to the total velocity shift.

All lines whose maximum Doppler shift ∆ν =
±ν0v∞/c puts them in range of the observer’s frame fre-
quency for which the radiative transfer is being calculated
are considered for that frequency point. In Figure 10, these
correspond to those lines whose rest frequencies lie in the
gray band in the (ν, z)-plane at z = 0.

Broadening of the lines includes thermal and microtur-
bulent contributions. For every atomic species and depth
point, the correct thermal Doppler broadening based on
atomic weight and local temperature is used. The micro-
turbulence we have used here is about 10 km/s in the pho-
tosphere and grows with the outflow velocity to a maxi-
mum value of 0.1 v∞ in the outer regions of the wind. This
is generally in good agreement with the observations.

After the occupation numbers have converged in the
iteration cycle using method I, one iteration block with
method II is usually sufficient for full convergence of the
model, as demonstrated by Figure 11, where the emer-
gent spectrum of our S-30 model after 1 iteration block of
method II is compared to the spectrum resulting from 5
iteration blocks.

A high-resolution spectrum is computed for the pur-
pose of comparison with observations (wavelength range
usually from 900 to 1600 Å) after full convergence of the
model. This spectrum is generated with the same proce-
dure as used for the detailed line blocking calculations.
The high-resolution spectrum is then merged with the
(usually) lower-resolution blocking flux for the final flux
output (Figure 12).

3.4. Line blanketing

Line absorption and emission also has an important ef-
fect on the atmospheric temperature structure. The corre-
sponding influence on the radiation balance is usually re-
ferred to as line blanketing. The objective now is to calcu-
late an atmospheric temperature stratification which con-
serves the radiative flux and which treats the impact of the
line opacities and emissivities properly. In principle there
are three methods for calculating electron temperatures
in model atmospheres. The commonly used one is based
on the condition of radiative equilibrium. The second one
uses a flux correction procedure, and the third one is based
on the thermal balance of heating and cooling rates. As
the first method has some disadvantages (see below), we
use the second and the third method (cf. Pauldrach et
al. 1998; for discussions on calculating temperature struc-
tures in other models for expanding atmospheres, see the
references listed in section 1; especially Drew (1989, 1990)
presented a comprehensive discussion of her method). In
deeper layers (τRoss > 0.1) where true absorptive processes
dominate we use the flux correction procedure, and the
thermal balance is used in the outer part of the expand-
ing atmosphere (τRoss < 0.1), where scattering processes
start to dominate.

The flux correction procedure. The idea of this method is
straightforward: The local temperature has to be adjusted
in such a way that the radiative flux is conserved. This re-
quires, however, that the temperature is the dominant pa-
rameter on which the flux depends, and that the effect of a
change in temperature on the flux is known. The first con-
dition is certainly the case for τRoss > 0.1. With regard to
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Fig. 13. The temperature structure versus the Rosseland op-
tical depth and the iteration block number for the same O
supergiant model as in Fig. 7 (Teff = 29 000 K, log g = 3.0,
R∗/R� = 27.0).

the second condition, a law for the temperature structure
is required which is controlled by some global parameters
that can be adjusted in a proper way in order to conserve
the flux. The “Hopf function”, usually applied for the grey
case, has an appropriate functional dependence which has
been adapted to the spherical NLTE case by Santolaya-
Rey et al. (1997) recently in a general way. The main char-
acteristic of the Hopf method is that the Rosseland optical
depth is the decisive parameter on which the temperature
stratification depends. Thus, in deeper layers the temper-
ature structure can be calculated efficiently by using this
new concept of the NLTE Hopf function:

T 4(r) = T 4
eff

3

4

τ̃Ross

τRoss
(qN(τ̃Ross) + τRoss) (26)

where τ̃Ross is the radial optical depth in the spherical
case,

dτ̃Ross = χRoss(r)

(

R∗

r

)2

dr, (27)

and

qN(τ̃Ross) ' q∞ + (q0 − q∞) exp(−γτ̃Ross) (28)

is the spherical NLTE Hopf function, where the parame-
ters q0, q∞, and γ are fitted to a predefined run of the
qN(τRoss) stratification (cf. Santolaya-Rey et al. 1997).
Test calculations performed with fixed parameters (q0,
q∞, and γ) and without metal lines lead to almost identi-
cal results for the temperature structures obtained by our
code and the completely independently developed code of
Santolaya-Rey et al. (cf. Pauldrach et al. 1998). The re-
liability of the method has been further proven by the
resulting flux conservation which turns out to be on the
1% level.

In the next step, line blocking has to be treated consis-
tently. Although the line processes involved are complex,

Fig. 14. The flux conservation versus the Rosseland optical
depth and the iteration block number for the same O su-
pergiant model as in Fig. 7 (Teff = 29 000 K, log g = 3.0,
R∗/R� = 27.0). The accuracy of the flux conservation is on
the 1% level for the final iteration blocks.

they always increase the Rosseland optical depth (τRoss).
In the deeper layers (τRoss > 0.1) this leads directly to
an enhancement of the temperature law (backwarming).
Using the method of the NLTE Hopf functions we thus
have to increase the parameter q0 first by using the flux
deviation at τRoss ≈ 3. This parameter is updated in the
corresponding iteration cycle until the flux is conserved at
this depth on the 0.5% level. Afterwards the same is done
with the parameter q∞ at an optical depth of τRoss ≈ 0.1.
In case the flux deviation at τRoss ≈ 3 becomes larger than
0.5% the parameter q0 is iterated again with a higher pri-
ority. As a last step in this procedure the parameter γ is
adjusted in order to conserve the flux at an optical depth
of τRoss ≈ 1.

The resulting temperature structure and the corre-
sponding flux deviation for an O supergiant model (Teff =
29 000 K, log g = 3.0, R∗/R� = 27.0) are shown in Fig. 13
and Fig. 14, respectively. As can be inferred from the fig-
ure, the flux is conserved for this model with an accuracy
of a few percent. (We note that from test calculations
where line blocking was treated, but parameters of the
NLTE Hopf function were held fixed, thus effectively ig-
noring blanketing effects, we found a flux deviation which
already starts in the inner part (τRoss < 50) and reaches a
value of up to 50% at τRoss ≈ 0.1.) This clearly shows the
importance of blanketing and backwarming effects and the
need to include them. As these test calculations have also
shown that absorptive line opacities dominate the total
opacity down to an optical depth of τRoss > 0.1, the tem-
perature structure is influenced by backwarming effects in
the entire atmosphere – cf. eq. 26.

The thermal balance. In the outer part of the expanding
atmosphere (τRoss < 0.1), where scattering processes start
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to dominate, the effects of the line influence on the tem-
perature structure are more difficult to treat. Of the two
possible treatments, calculating for radiative equilibrium
or for thermal balance, we have chosen the latter one,
as the convergence of the radiative equilibrium method
turned out to be problematic since the τRoss-values are
small in this part, and, hence, most frequency ranges
are optically thin. (This has recently also been proven
by Kubat et al. (1999), where the corresponding equa-
tions of the method are also presented.) In calculating the
heating and cooling rates (Hummer and Seaton 1963), all
processes that affect the electron temperature have to be
included – bound-free transitions (ionization and recombi-
nation), free-free transitions, and inelastic collisions with
ions. For the required iterative procedure we make use
of a linearized Newton-Raphson method to extrapolate a
temperature that balances the heating and cooling rates.

Fig. 13 displays for the model above the resulting tem-
perature structure vs. the number of iterations and shows
a pronounced bump and a successive decrease of the tem-
perature in the outer atmospheric part. (For an explana-
tion of this effect, see Mihalas 1978 and references therein.)
That the mismatch of the heating and cooling rates imme-
diately goes to 0% in the outer part (τRoss < 0.07) where
they are applied for correcting the temperature structure
has already been presented by Pauldrach et al. (1998).

We note at this place that the direct influence of X-rays
(see next section) on the temperature structure via ther-
malization is negligible, since the energy contained is very
small (LX/Lbol ≈ 10−7). However, X-rays can indirectly
influence the temperature by changing the ionization bal-
ance – the corresponding change of opacities in the EUV
and UV can then affect the temperature via normal ra-
diative processes. This, however, is properly considered in
our procedure.

3.5. Revised inclusion of EUV and X-ray radiation

The EUV and X-ray radiation produced by cooling zones
which originate from the simulation of shock heated mat-
ter arising from the non-stationary, unstable behavior of
radiation driven winds (see Lucy and Solomon 1970, who
found that radiation driven winds are inherently unsta-
ble, and Lucy and White 1980 and Lucy 1982, who ex-
plained the X-rays by radiative losses of post-shock re-
gions where the shocks are pushed by the non-stationary
features) is, together with K-shell absorption, included in
our radiative transfer. The primary effect of the EUV and
X-ray radiation is its influence on the ionization equilib-
rium with regard to high ionization stages like Nv and
O vi (cf. the problem of “superionization”, the detection
of the resonance lines of Ovi, Nv, Svi in stellar wind
spectra (cf. Snow and Morton 1976); in a first step this
problem was investigated theoretically by Cassinelli and
Olson 1979) where the contribution of enhanced direct
photoionization due to the EUV shock radiation is as im-
portant as the effects of Auger-ionization caused by the

soft X-ray radiation (cf. Pauldrach 1987; Pauldrach et
al. 1994 and 1994a). In order to treat this mechanism ac-
curately it is obviously important to describe the radia-
tion from the shock instabilities in the stellar wind flow
properly. Note that in most cases a small fraction of this
radiation leaves the stellar wind to be observed as soft
X-rays with Lx/Lbol ≈ 10−7 (cf. Chlebowski et al. 1989).
Thus, the reliability of the shock description can be fur-
ther demonstrated by a comparison to X-ray observations,
by ROSAT for instance.

In principle, a correct calculation of the creation and
development of the shocks is required for the solution of
the problem. This means that a detailed theoretical inves-
tigation of time-dependent radiation hydrodynamics has
to be performed (for exemplary calculations see Owocki,
Castor, and Rybicki 1988 and Feldmeier 1995). However,
these calculations favor the picture of a stationary “cool
wind” with embedded randomly distributed shocks where
the shock distance is much larger than the shock cooling
length in the accelerating part of the wind. They also indi-
cate that only a small amount of high velocity material ap-
pears with a filling factor not much larger than f ≈ 10−2,
and jump velocities of about us = 300 . . .700 km/s which
give immediate post-shock temperatures of approximately
Ts = 1×106 to 8×106 K. We also note that the reliability
of these results was already demonstrated by a comparison
to ROSAT-observations (cf. Feldmeier et al. 1997).

On the basis of these results we had developed an em-
pirical approximative description of the EUV and X-ray
radiation, where the shock emission coefficient

εsν(r) =
f

4π
npneΛν(Ts(r) ne) (29)

was incorporated in dependence of the volume emis-
sion coefficient Λν calculated by using the Raymond and
Smith (1977) code for the X-ray plasma, the velocity-
dependent post shock temperatures Ts, and the filling
factor f which enter as fit parameters – these values are
determined from a comparison of the calculated and ob-
served ROSAT “spectrum”. With this description the ef-
fects on the high ionization stages (Nv, Ovi) lead to
synthetic spectral lines which reproduce the observations
almost perfectly (cf. Pauldrach et al. 1994 and 1994a).
However, with this method we were not able to reproduce
the ROSAT-observations with the same model parameters
simultaneously (see below). We therefore had to determine
the filling factor and the post-shock temperatures by a
separate and hence in view of our concept not consistent
procedure (cf. Hillier et al. 1993). In order to overcome
this problem refinements to our method are obviously re-
quired.

In the present treatment the outlined approximative
description of the EUV and X-ray radiation has been re-
vised. The major improvement consists of the considera-
tion of cooling zones of the randomly distributed shocks
embedded in the stationary cool component of the wind.
Up to now we had assumed, for reasons of simplicity, that
the shock emission is mostly characterized by the imme-
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diate post-shock temperature, i. e., we considered non-
stratified, isothermal shocks. This, however, neglects the
fact that shocks have a cooling structure with a certain
range of temperatures that contribute to the EUV and X-
ray spectrum. Our revision comprises two modifications to
the shock structure. The first one concerns the inner re-
gion of the wind, where the cooling time can be regarded
to be shorter than the flow time. Here the approxima-
tion of radiative shocks can be applied for the cooling pro-
cess (cf. Chevalier and Imamura 1982). The second one
concerns the outer region, where the stationary terminal
velocity is reached, the radiative acceleration is negligi-
ble, and the flow time is therefore large. Here radiative
cooling of the shocks is of minor importance and the cool-
ing process can be approximated by adiabatic expansion
(cf. Simon and Axford 1966, who investigated a pair of re-
verse and forward shocks that propagate through an ambi-
ent medium under these circumstances). For our purpose
we followed directly the modified concept of isothermal
wind shocks presented recently by Feldmeier et al. (1997).

Compared to eq. 29 we account for the density and
temperature stratification in the shock cooling layer by
replacing the values of the volume emission coefficient
(Λν(Ts(r) ne)) through adequate integrals over the cool-
ing zones denoted by Λ̂ν(Ts(r)). Thus, εsν(r) is replaced
by

ε̂sν(r) =
f

4π
npneΛ̂ν(Ts(r)), (30)

where

Λ̂ν(Ts(r)) = ±
1

xs

r±xs
∫

r

f̂2(r′)Λν(Ts(r
′) · ĝ(r′)) dr′, (31)

and r is the location of the shock front, r′ is the cooling
length coordinate with a maximum value of xs, the plus
sign corresponds to forward and the minus sign to reverse
shocks, and f̂ (r′) and ĝ(r′) denote the normalized den-
sity and temperature structures with respect to the shock
front. The improvement of our treatment is now obviously
directly connected to the description of the latter func-
tions. In the present step we used the analytical approx-
imations presented by Feldmeier et al. (1997), which are
based on the two limiting cases of radiative and adiabatic
cooling layers behind shock fronts (see above).

3.5.1. Test calculations and first results

In the following we present results of test calculations
showing the influence of our modified treatment of shock
emission. For this purpose we selected the O4f-star
ζ Puppis as a test object and ignored for the correspond-
ing model calculations the improved blocking and blan-
keting treatment discussed above. This restriction makes
our results directly comparable to those of Pauldrach et
al. (1994a), who used the old, simplified treatment for
the shock emission. The stellar parameters of ζ Puppis,
used as basic input for our models, have been adopted
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Fig. 15. Calculated and observed UV spectrum for the O4f-
star ζ Puppis. The calculated spectrum belongs to a model
where the influence of shock emission has been neglected. The
high resolution observations have been obtained with the IUE
and Copernicus satellites. (Note that the improved blocking
and blanketing treatment has not been considered for the
model calculations of this object – see text.)
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Fig. 16. Calculated and observed UV spectrum for the O4f-
star ζ Puppis. The calculated spectrum belongs to a model
where the influence of shock emission has been included
(model 1).
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Fig. 17. Calculated and observed UV spectrum for the O4f-
star ζ Puppis. The calculated spectrum belongs to a model
where the influence of shock emission has been included in
accordance with our improved method (model 2).

log( L
L�

) Teff

103K
log g R?

R�

v∞

km/s
Ṁ

10−6M�/yr

6.006 42 3.625 19 2250 5.9

Table 2. The stellar parameters of the O4f-star ζ Puppis.

YHe = 1.20YHe,� YC = 0.35YC,�

YN = 8.00YN,� YO = 0.75YO,�

Table 3. Abundances used for the ζ Puppis model. YX :=
nX/nH, where YX,� denotes the solar abundance. For all other
abundances solar values were used.

log(Ts

K
) f

10−3 log( NH

cm−2 )

6.75 4.3 20.00

Table 4. Parameters required for describing the cooling zones
of the shocked gas.
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from Pauldrach et al. 1994 (see Table 2), together with
the abundances listed in Table 3. (These abundances have
recently been confirmed by Kahn et al. (2000) from high
resolution X-ray spectroscopy of ζ Puppis with the XMM
Newton reflection grating spectrometer.)

Although the final objective of our treatment is the
determination of the maximum post-shock temperature
(Ts) and the filling factor (f) from a comparison of the
calculated and observed ROSAT spectrum, we have also
adopted these values for the present test calculations from
the similar fits performed by Feldmeier et al. (1997). The
values are given in Table 4 together with the interstellar
column density of hydrogen (log(NH), cf. Shull and van
Steenberg 1985).

We start with a spectrum synthesis calculation where
EUV and X-ray radiation by shock heated matter is ne-
glected. The comparison between the observed and the
synthetic spectrum (Fig. 15) shows clearly that the strong
observed resonance lines of O vi are not reproduced by
the model. This striking discrepancy illustrates what is
meant by the problem of “superionization”. In Fig. 16 we
demonstrate, however, that this problem has already been
solved by making use of the EUV and X-ray radiation re-
sulting from the treatment of isothermal shocks (model 1).
The observed resonance lines of O vi are reproduced quite
well, apart from minor differences. Thus it seems that the
wind physics are correctly described. That this is not com-
pletely the case can be inferred from Fig. 18 where the
ROSAT PSPC spectrum (error bars) is shown together
with the result of model 1 (thin line). The deficiency of
the non-stratified isothermal shocks is obvious – the model
yields too little radiation in the soft X-ray part (shortward
of 0.7 keV the spectrum is more likely characterized by a
cooler shock component of logTs ≈ 6.30) and too much in
the harder energy band.

Following the strategy outlined above we now inves-
tigate how far the structured cooling zones behind the
shocks can influence this negative result. Fig. 18, which
shows in addition the calculated X-ray spectrum of our
improved model (model 2, thick line), illustrates the im-
provement. Strikingly, the new calculations can quite well
reproduce the ROSAT PSPC spectrum and the compari-
son shown is at least of the same quality as that obtained
by Feldmeier et al. (1997) with their best fit (see also
Stock 1998) – note that the total X-ray luminosity of this
model is given by

Lx =

∫ 2.5keV

0.1keV

Lν dν = 10−7.1Lbol. (32)

Actually, it is the fact that, compared to the non-stratified
isothermal shocks, the post-shock cooling zones with their
temperature stratifications radiate much more efficiently
in the soft spectral band which leads to the improved fit.
This is portrayed in Fig. 19.

Fig. 20 shows the location of the optical depth unity
in the relevant energy band of ROSAT. Apart from dis-
playing the influence of the K-shell opacities, it becomes
evident from this figure that the wind is optically thick up
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Fig. 18. Comparison of the ROSAT-observations (error bars)
with the results of model 2 (thick line) and model 1 (thin line)
for ζ Puppis.
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Fig. 19. The Eddington flux in the EUV and X-ray band re-
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ζ Puppis. Note that the maximum shock temperatures are
identical for both models.
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Fig. 20. Spatial location of the optical depth unity in the rel-
evant energy band of ROSAT, displaying the origin of the ob-
served flux. Also shown is the influence of the K-shell opacities
for model 2 of ζ Puppis.
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Table 5. The parameters of our basic model grid stars. The Zanstra integrals given here are defined as QX =

∫

∞

νX

Hν

hν
dν,

where hνX is the ionization energy of ion X.

Model Teff log g R v∞ Ṁ log QH log QHe+ Hν(5480 Å)
(K) (cgs) (R�) (km/s) (10−6M�/yr) (10−3 erg/s/cm2/Hz)

Dwarfs

D-30 30000 3.85 12 1800 0.008 21.42 8.42 0.3702
D-35 35000 3.80 11 2100 0.05 22.65 11.41 0.4771
D-40 40000 3.75 10 2400 0.24 23.15 17.63 0.5859
D-45 45000 3.90 12 3000 1.3 23.45 18.99 0.6817
D-50 50000 4.00 12 3200 5.6 23.69 20.28 0.7743
D-55 55000 4.10 15 3300 20 23.89 20.17 0.8881

Supergiants

S-30 30000 3.00 27 1500 5.0 22.32 6.39 0.4229
S-35 35000 3.30 21 1900 8.0 22.88 9.70 0.4935
S-40 40000 3.60 19 2200 10 23.19 11.24 0.5998
S-45 45000 3.80 20 2500 15 23.48 11.84 0.7160
S-50 50000 3.90 20 3200 24 23.71 18.34 0.8204

to large radii, especially in the soft X-ray band. This fact
reduces the significance of the fit of the ROSAT spectrum,
because most of the observed X-ray radiation is obviously
emitted in the outermost part of the wind and thus only
the properties of the radiation produced in this outer re-
gion can be analyzed from the observed spectrum. This,
however, is not the case for the EUV and X-ray radiation
which populates the occupation numbers connected with
the resonance lines of Nv and O vi, since due to their P-
Cygni structure these lines provide information about the
complete wind region, and the properties of the influenc-
ing radiation produced in the the whole wind region can
therefore be analyzed by means of spectral line diagnos-
tics.

Hence, for the significance of our modified method it
is therefore extremely convincing that the synthetic UV-
spectrum resulting from model 2 also reproduces the ob-
served resonance lines of Nv and O vi (the latter is shown
in Fig. 17). That both model 1 and model 2 yield a good
fit of the P-Cygni lines shows, on the other hand, that dis-
tinguishing between two different models from the profiles
alone is not always possible. The fact that our improved
treatment accounting for the structured cooling zones be-
hind the shocks solves not only the problem of “superion-
ization”, but reproduces for the first time consistently the
ROSAT PSPC spectrum as well as the resonance lines of
N v and Ovi gives us confidence in our present approach.

From Figs. 16 and 18 we deduce that the method cor-
responding to model 1, which we will use in the calcula-
tions in section 4, nevertheless turned out to be a good
description of the shock radiation (considering the greater
importance, as discussed in the previous paragraph, of a
fit of the UV resonance lines of the highly ionized species
compared to a fit of the Rosat spectrum), as it reproduces
the UV spectral lines of the highly ionized species as well
as the improved method and also leads to a rather good
description of the X-ray spectrum, which can be used as

long as the Rosat observations are not required to be fitted
perfectly. (Note that the improved treatment of the X-ray
radiation is not yet available in the download version of
the code; it will be implemented in an upcoming version
(2.x).)

4. Results

In the following we apply our improved code for expanding
atmospheres to a basic model grid of O-stars. The objec-
tives of these calculations are to present ionizing fluxes
which can be used for the quantitative analysis of emis-
sion line spectra of H ii-regions and Planetary Nebulae,
and to prove our method and demonstrate its reliability
by means of synthetic UV spectra which are qualitatively
compared to corresponding observations. (Note that for
the standard model calculations the EUV and X-ray shock
radiation is not included – using our WM-basic program
package this should always be the first step. For succeeding
models in an advanced stage we have used solely our previ-
ous method based on isothermal shocks (cf. Section 3.5),
since this is the method which is presently available for
WM-basic and thus the models presented in the following
can be reproduced by this offered tool.)

Finally, one of the grid models is chosen for a de-
tailed comparison between observed and calculated syn-
thetic spectra, where the primary objective has been to
develop diagnostic tools for the verification of stellar pa-
rameters, and the determination of abundances and stel-
lar wind properties entirely from the UV spectra. This has
been carried out for a cooler O9.5 Ia supergiant, α Cam
– a cooler object has been chosen since several aspects
tend to make these generally more problematic, such as
the ionization balance (more stages are affected) and the
optical thickness of the continuum in the wind part.
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Fig. 21. Calculated ionizing fluxes (Eddington flux in cgs units) versus wavelength of the model grid stars; dwarfs on the left,
supergiants on the right.

4.1. The basic model grid

In this section we present the ionizing fluxes and synthetic
spectra of a basic model grid of O-stars of solar metallicity,
comprising dwarfs and supergiants with effective tempera-
tures ranging from 30,000 to 50,000K. The model param-
eters, summarized in Table 5, were chosen in accordance
with the range of values deduced from observations as tab-
ulated by Puls et al. 1996.

In Fig. 21 we show for each model the primary result,
the ionizing emergent flux together with the corresponding
continuum. It can be verified from the figure that the influ-
ence of the line opacities, i. e., the difference between the
continuum and the total flux, increases from dwarfs to su-
pergiants and from cooler to hotter effective temperatures.
Both points are not surprising, because they are directly
coupled to the mass loss rate (Ṁ ) which increases exactly
in the same manner (cf. Table 5). Due to the increasing
Ṁ the optical depth of the lines also increases in the wind
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Fig. 21. (continued) Calculated ionizing fluxes (Eddington flux in cgs units) versus wavelength of the model grid stars; dwarfs
on the left, supergiants on the right.

part and in consequence the line blocking effect is more
pronounced. This behavior, however, saturates for objects
with effective temperatures larger than Teff = 45 000 K,
since in this case higher main ionization stages are en-
countered (e. g., Fev and Fevi) which are known to have
less bound-bound transitions (cf. Pauldrach 1987). Thus,
as can be verified from Fig. 21 the effect of line blocking is
strongest for supergiants of intermediate Teff . In Table 5
we also present the numerical values of the integrals of
ionizing photons emitted per second for H (log QH) and

He ii (log QHe+), as well as the flux at the reference wave-
length λ = 5480 Å, which can be used directly to calculate
Zanstra ratios and Strömgren radii.

The next step is to demonstrate the reliability of
the calculated emergent fluxes. As the wavelength region
shortward of the Lyman edge usually cannot be observed
and thus a direct comparison of the fluxes with obser-
vations is not possible, an indirect method to test their
accuracy is needed. In principle, two such methods exist.
The first one is to test the ionizing fluxes by means of
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Table 6. Model grid stars and real-world examples with similar spectral types. The parameters of the observed example stars
are from Puls et al. 1996.

Model / classi- Teff log g R M v∞ Ṁ
Example fication (K) (cgs) (R�) (M�)

log
L

L� (km/s) (10−6M�/yr)

Dwarfs

D-30 30000 3.85 12 37 5.02 1800 0.008
HD 149757 (ζ Oph) O9 III 32500 3.85 12.9 43 5.22 1550 ≤0.03

D-40 40000 3.75 10 21 5.36 2400 0.24
HD 217068 O7 V n 40000 3.75 10.3 22 5.39 2550 ≤0.2

D-50 50000 4.00 12 53 5.91 3200 5.6
HD 93250 O3 V ((f)) 50500 4.00 18 118 6.28 3250 4.9

Supergiants

S-30 30000 3.00 27 27 5.73 1500 5.0
HD 30614 (α Cam) O9.5 Ia 30000 3.00 29 31 5.79 1550 5.2

S-40 40000 3.60 19 53 5.92 2200 10
HD 66811 (ζ Pup) O4 I (f) 42000 3.60 19 53 6.00 2250 5.9

S-50 50000 3.90 20 116 6.35 3200 24
HD 93129A O3 I f∗ 50500 3.95 20 130 6.37 3200 22

their influence on the emission lines of gaseous nebulae,
i. e., using the ionizing fluxes as input for nebular models
and comparing the calculated emission line strengths to
observed ones. However, as a first step this procedure is
questionable, since the diagnostics of gaseous nebulae is
still not free from uncertainties – dust clumps, complex
geometric structure, etc. – and therefore, if discrepancies
are encountered, it is difficult to decide which of the as-
sumptions is responsible for the disagreement. (As an ex-
ample we mention the Ne iii problem discussed compre-
hensively by Rubin et al. 1991 and Sellmaier et al. 1996.)
Rather, nebular modelling and diagnostics should be able
to build upon the reliability of the ionizing fluxes, and
thus the quantitative accuracy of the fluxes needs to be
tested independently of their use in nebular emission line
analysis.

The second – and in the light of the difficulties dis-
cussed above, the only trustworthy – method is quite anal-
ogous, but instead of an external nebula involves the atmo-
sphere of the star itself. The rationale is that the emergent
flux is but the outer value of a radiation field calculated
selfconsistently throughout the entire wind, which influ-
ences the ionization balance at all depths. This ionization
balance can be traced reliably through the strength and
structure of the wind lines formed everywhere in the at-
mosphere. Hence it is a natural and important step to test
the quality of the ionizing fluxes by virtue of their direct
product: the UV spectra of O stars.

4.2. Qualitative comparison with observations

The test is performed by means of synthetic UV spectra
which are qualitatively compared to observed IUE spec-
tra and as such cannot be expected to conform in all de-
tails. (Minor discrepancies can only be discussed at hand
of detailed comparisons. How such discrepancies might be

removed by an adjustment of the stellar parameters is
shown, as an example, by means of a detailed compari-
son for α Cam in section 4.3. In several spectral regions
with numerous absorption lines (Fe iv, Fev, Ni iv) dis-
crepancies might also be due to difficulties in placing the
continuum of the observations.) For this qualitative com-
parison we have chosen, for each model of a subset of our
grid, a real object from the list of Puls et al. 1996 whose
supposed stellar and wind parameters come very close to
those of the model. The parameters of the model stars
and the selected real objects are summarized in Table 6.
(The influence of shock radiation on the models has been
neglected at this qualitative step.)

First we investigate the spectra of the dwarf models.
As can be inspected from Fig. 22 the comparison of the
models D-30 and D-40 with their counterparts HD 149757
and HD 217068 show in principle an overall agreement,
whereas the D-50 model, compared with its counterpart
HD 93250, shows a severe discrepancy concerning the Ov

subordinate line at 1371 Å (the calculated line is much
too strong) and a less pronounced discrepancy of the N iv

subordinate line at 1718 Å (the calculated line is somewhat
too weak). Hence we have to realize that either the wind
physics is not completely described, or the stellar or the
wind parameters of this model are too different from those
of HD 93250.

Regarding the first point one might speculate that the
inclusion of shock radiation leads to an improvement for
the Ov line, although this effect would weaken the N iv

line further. As is shown below, shock radiation cannot
solve the problem, as it does not affect the strength of the
Ov line at all (cf. the discussion of the S-50 model be-
low). Regarding the second point there are three param-
eters which could lead to an improvement for both lines.
The first one is the effective temperature which, however,
would have to be decreased by at least 5000K. This is on
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Fig. 22. Calculated UV spectra of the model grid dwarfs (left) compared to observed IUE spectra (right) of stars of similar
spectral type.

the one hand extremely unrealistic, since O3 and O4 stars
would have almost the same Teff , and it would on the other
hand produce another discrepancy due to an increase of
the strength of the O iv line at 1338 Å (cf. the S-40 model
in Fig. 23). The second parameter is the mass loss rate
and the third one is the abundance. In order to investi-
gate whether a systematic variation in the mass loss rate
can solve the problem we computed a small model subgrid
for this object by changing the mass loss rate for model
D-50, keeping all other parameters the same (cf. Table 7).

The synthetic spectra obtained for the mass loss rate
sequence are shown in Figure 24. As can be seen, lower-
ing the mass loss rate does not solve the problem of the
too-strong O v line, as this is one of the last lines to disap-
pear with diminishing mass loss rate, whereas the N iv line
which was already too weak disappears immediately. A
mass loss rate as low as 10−8 M�/yr would be required to
reduce the strength of the Ov line to the observed case.
The only model where the situation has clearly improved
regarding both the N iv and the Ov line is D-50-a, the
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Fig. 23. Calculated UV spectra of the model grid supergiants (left) compared to observed IUE spectra (right) of stars of similar
spectral type.

one with a higher mass loss rate. Hence we conclude that
the mass loss rate has to be larger by a factor of ≈ 2 –
note that this is also indicated by the stellar parameters
of HD 93250 which are very close to those of HD 93129A,
which means that the wind parameters have to be similar
too; note further the strong similarity of the observed spec-
tra of HD 93129A and HD 93250, which points in the same
direction (cf. Fig. 25, upper panel); in addition, the abun-
dances of the CNO elements have to be reduced strongly
compared to the solar values (for oxygen a reduced value

of approximately a factor of 50 is required to weaken the
strength of both the O iv and the Ov line, as has been
inferred from additional test calculations). This, however,
should not be the case for the heavier elements (Fe, Ni)
since a solar-like abundance of these elements is required
to account for the radiative acceleration necessary to pro-
duce the higher mass loss rate (cf. Pauldrach 1987).

Now we inspect the comparison of the supergiant mod-
els (Fig. 23). As is shown, the observed spectra are re-
produced in principle quite well apart from minor differ-
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Fig. 24. Spectra obtained for a mass loss rate sequence for
the D-50 dwarf model. For comparison, the IUE spectrum of
HD 93250 is also shown. The mass loss rates of the models are
given in Table 7. Lowering the mass loss rate cannot solve the
problem of the too-strong Ov line, as this is one of the last
lines to disappear with diminishing mass loss rate.

ences which can be attributed to a change of abundances
(note that the discrepancy of the Nv resonance line is
due to the omitted shock radiation – see below). Again,
the most conspicuous difference regards the O iv and Ov

subordinate lines which are both too strong, especially
for the S-40 and the S-50 models. From the investigation
above it is already quite clear that the abundance(s) of
the (CN)O element(s) has (have) to be reduced in order
to overcome this discrepancy. Nevertheless, we investigate
now whether the inclusion of shock radiation leads to an
improvement. We have therefore computed an additional
model for the S-50 supergiant, model S-50-a, where the
influence of shocks on the spectrum has been accounted
for; the shock parameters are given in Table 8.
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Fig. 25. Upper panel: Comparison of the IUE spectra of
HD 93129A (O3 I f) and HD 93250 (O3 V((f))). Apart from
the strength of a few lines of light elements (e. g., the N iv

line at 1718 Å) the spectra are almost identical. Other pan-
els: Influence of shocks on the spectrum of the S-50 supergiant
model. Middle panel: without shocks, lower panel: with shocks.
The influence of the shocks on the strength of the O iv and
Ov lines is negligible.

Figure 25 shows that the influence of the shocks on
the strength of the O iv and Ov lines, and hence the
ionization balance, is negligible – just Ovi is enhanced
selectively, which can be seen by the strength of the Ovi

resonance line. Another line which is considerably affected
by shock emission is the Si iv resonance line. This is be-
cause the soft X-ray radiation field of the shocks enhances
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Model D-50-a D-50 D-50-b D-50-c D-50-d

Ṁ (10−6M�/yr) 11.0 5.6 0.56 0.12 0.01

Table 7. Mass loss rates for the models shown in Figure 24.
All other parameters are identical to those of the D-50 model
shown in Table 5.

log(LX/Lbol) vt/v∞ γ m

−7.0 0.1 1 1

Table 8. Shock parameters for the S-50-a model shown in
Figure 25. For an explanation of the parameters see Section 4.3.

the ionization of Siv, and thus the recombination to Si iv
is decreased (cf. Pauldrach et al. 1994). As can be inferred
from Fig. 25 this improves the fit of the Si iv line signifi-
cantly. Concerning oxygen we come to the same conclusion
as for the dwarf models, namely that the abundance has
to be reduced strongly compared to the solar value.

4.3. Detailed analysis of α Cam

In this section we provide, using our S-30 grid model as a
starting point, a detailed determination of the abundances
and stellar wind properties, and verification of the stellar
parameters of α Cam. Special emphasis is given to the
shock radiation needed for a fit of the Nv and Ovi res-
onance lines. Although preliminary results from our new
shock description look very promising (see section 3.5),
this new method is not yet fully implemented in WM-
basic. For this investigation we therefore use the method
based on isothermal shocks. See Pauldrach et al. 1994
and 1994a for a detailed explanation of the shock param-
eters and the rationale behind the parameterization.

We wish to point out here that we have not attempted
an exact determination of log g and stellar radius, but have
rather kept the values of our S-30 grid model. The reason
is that in contrast to the hydrodynamics the UV spec-
trum depends only marginally on these parameters, the
main influence being due to Teff and Ṁ (i. e., density).
The radius and the surface gravity (log g) can in prin-
ciple be determined from a selfconsistent calculation of
the hydrodynamics and the NLTE model, in which both
values would be adapted in such a way that the hydrody-
namics, with consistent force multiplier parameters from
the NLTE occupation numbers (in turn again dependent
on the hydrodynamic solution), would yield the mass loss
rate and the terminal velocity deduced from Hα and the
observed UV spectrum (cf. Pauldrach et al. 1994, 1994a).
This latter procedure has however not yet been imple-
mented in WM-basic.

In Fig. 26 we compare the spectrum of our basic S-
30 grid model with the spectra of α Cam observed with
IUE and Copernicus. With the exception of a few strong
lines, notably the Nv resonance doublet at 1238, 1242 Å
and the subordinate C iii line at 1247 Å, the agreement is
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Fig. 26. Comparison of the basic S-30 grid model with spectra
of α Cam observed by IUE and Copernicus.

very good for a first step, especially with respect to the
iron and nickel “forest” between 1400 and 1600 Å. As the
two lines mentioned above are mainly affected by shock
radiation, and as it is not clear a priori how shocks affect
the lines used to determine, e. g., the temperature, we will
first attempt to fit the shock parameters before verifying
the stellar parameters. We note in passing that the strong
lines from 1000 to 1100 Å (with the recurring pattern),
that complicate an exact fit of the O vi resonance line, are
absorption by interstellar molecular hydrogen.

A model with reasonable “first guess” values for the
shock parameters (model a, Table 9) already gives a very
good fit to the Nv resonance line, as shown in Fig. 27,
the emission, however, completely decimated by the much
too strong C iii λ1247 line. Increasing the X-ray luminos-
ity (log(LX/Lbol)) to reduce the C iii occupation unfor-
tunately also tends to ionize Si iii to Si iv, thus reduc-
ing the strength of the Si iii line. Modifying vt/v∞ (the
ratio of the maximum jump velocity to the terminal ve-
locity, where vt characterizes the immediate post-shock
temperature; see Pauldrach et al. 1994) does not change
this fact, as we have confirmed by calculating a grid of
models with values of log(LX/Lbol) ranging from −8 to
−6.5 and vt/v∞ ranging from 0.1 to 0.2. For example, a
model sequence (models b1–b3) is shown in Fig. 28, in
which we vary log(LX/Lbol) from −7.5 to −6.5, keeping
all other parameters constant (cf. Table 9). As can bee
seen, the Si iii line already begins to weaken, while C iii

still remains too strong. Adjusting the parameter γ (which
controls the strength of the shocks relative to the local ve-
locity – cf. Pauldrach et al. 1994) does not help either,
as both the C iii and the Si iii line are formed in the in-
ner part of the wind, thus both being subject to the same
radiation field.

From this we conclude that solar abundances cannot
reproduce the observed spectrum. A model, however, with
a reduced carbon abundance of one tenth solar (model c)
can indeed give a good fit of the line, as shown in Fig. 29.
We will use this abundance for the following calculations,
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Fig. 27. Model a, using our “first guess” values for the shock
parameters. C iii λ1247 is much too strong.
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Fig. 28. Models b1–b3, a sequence showing the influence of
increasing log(LX/Lbol). Note that Si iii disappears before C iii

has decreased to its observed strength.
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Fig. 29. Model c. Here we have adapted the shock parameters
and abundances (see Table 9) to provide for a reasonable fit of
Si iii and C iii.

unless stated otherwise. As carbon thus shows indications
of the CNO-process, we have for reasons of consistency
also increased the nitrogen abundance by a factor of 10,
but such a large factor is not compatible with the fit of
the nitrogen lines; from the final models we determined
the nitrogen abundance to be approximately solar.

Despite the good fit, this model is still not satisfactory,
as it shows no signs of Ovi. Since the C iii/Si iii-balance
strongly constrains the shock strength in the inner regions,
this cannot be achieved simply by increasing the X-ray
luminosity. However, the onset of shocks can be adapted
with the parameter m, which gives the ratio of outflow
to sound velocity where shocks start to form, and as the
jump velocity is correlated to the outflow velocity, the cor-
responding radius (cf. Pauldrach et al. 1994). Increasing
this parameter allows shocks in the outer regions (O vi ap-
pears close to v∞), while leaving the inner regions (where
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keeping all other parameters equal. In model d4, where Si iii
remains fairly unaffected by shocks, the P Cygni emission of
Ovi and Nv has completely disappeared.
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Fig. 31. Model e. Increasing the shock jump velocity provides
for harder shock radiation that has a stronger influence on Ovi

and Nv than on Si iii. The abundances of C, N, O, and P have
also been adapted.

Si iii is present) largely undisturbed. This behaviour of the
shocks is already an important result from our analysis.

Fig. 30 shows a model sequence in which m is increased
from 1 to 60; log(LX/Lbol) has been increased compared
to model c to provide for sufficient Ovi. It can bee seen
that in model d4 (m = 60), where Si iii retains its cor-
rect strength and the absorption of Ovi and Nv is of the
correct magnitude, the emission of both latter lines has
disappeared completely. This is because the emission of
P Cygni lines due to resonance scattering arises to a large
part from the inner regions of the wind, where the stellar
radiation field is still strong; in this model however, Nv

and Ovi hardly exist in these regions, since the shock ra-
diation responsible for the presence of these ions is only
produced far out in the wind and the ionization contin-
uum is still optically thick at the corresponding photoion-
ization thresholds. We conclude that the onset of shocks
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Table 9. Model parameters for α Cam. Abundances not explicitly mentioned are solar; if given, the number is the factor relative
to the solar value. Teff is in K, Ṁ in 10−6 M�/yr.

Model Teff Ṁ vt/v∞ log(LX/Lbol) γ m abundances

a 30000 5 0.125 −7.5 1 1 solar
b1 30000 5 0.14 −7.5 1 1 solar
b2 30000 5 0.14 −6.0 1 1 solar
b3 30000 5 0.14 −6.5 1 1 solar
c 30000 5 0.20 −7.5 0.5 1 C = 0.1, N = 10., O = 1.0, P = 0.1, S = 2.0
d1 30000 5 0.14 −7.0 0.5 1 — " —
d2 30000 5 0.14 −7.0 0.5 30 — " —
d3 30000 5 0.14 −7.0 0.5 40 — " —
d4 30000 5 0.14 −7.0 0.5 60 — " —
e 30000 5 0.25 −6.5 0.5 30 C = 0.1, N = 2.0, O = 0.3, P = 0.05, S = 1.0
f 29000 5 0.25 −6.5 0.5 30 — " —

best fit → g 29000 5 0.25 −6.5 0.5 30 C = 0.05, N = 1.0, O = 0.3, P = 0.05, S = 1.0
h 28000 5 0.25 −6.5 0.5 30 — " —
i 28000 2.5 0.25 −6.5 0.5 30 — " —
j 28000 10 0.25 −6.5 0.5 30 — " —
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Fig. 32. The complete EUV spectrum of model e (Teff =
30000 K).

must lie further in, and, correspondingly, the shock radi-
ation must be harder (maximum at smaller wavelengths)
than attainable with a vt/v∞ value of 0.14, so as to have a
comparatively larger influence on N v and Ovi via Auger-
ionization than on Si iii via photoionization.

This reasoning is confirmed by model e (Fig. 31), in
which we have reduced m to 30 and increased vt/v∞ to
0.25 (corresponding to a maximum shock temperature of
2.0×106 K). The shock parameters of this model yield the
best overall agreement of the most important UV spectral
lines. Note that for this model we have in addition reduced
the phosphorus abundance to 0.05 times solar, to obtain
a fit of the Pv line. As it concerns only a single element
and since evidence for an underabundance of phosphorus
has already been encountered from an analysis of another
hot star, namely the O4f-star ζ Puppis (cf. Pauldrach et
al. 1994; and Section 3.5, this paper), it is most likely that
the discrepancy between the observed and calculated Pv

resonance line is caused by the proposed abundance effect.
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Fig. 33. Model f. Like model e, but with a Teff of 29000 K.
Note the better fit of Si iii and O iv.

We further note that the imbalance of S iv and Sv is most
likely due to a combination of abundances and imperfect
atomic data, as our S iv atomic model has not yet reached
the quality of those of other ionization stages and is still
in a stage of rather incomplete description (cf. Table 1).
Note that we have also reduced the oxygen abundance,
thereby improving the fit of both O iv and Ovi.

Having thus constrained the strength and distribu-
tion of the shocks, we still need to check to what extent
the effective temperature and the mass loss rate can be
constrained further through our analysis of the UV spec-
trum. For this purpose, we have computed a model with
Teff of 29 000K but otherwise same parameters (model f),
whose spectrum is shown in Figure 33. Comparing this
to the spectrum of model e (30000K) (Fig. 32) we note
a marginally better fit of the spectral region from 1450
to 1650 Å, and a slight improvement in Si iv and O iv.
More significant is the extreme sensitivity of the Si iii and
the C iii line to this small change in temperature, which
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Fig. 34. Model g. Like model f, but with adapted abundances (see Table 9). This is our best fit.

reveals that these lines can be utilized as temperature in-
dicators in this spectral range. We concede that the fit of
N v is still somewhat imperfect, but point out that the
shock model used is not in a final stage (see above); we
expect this to improve with our new method. In a next
step we have reduced the carbon abundance further (to
0.05 solar) and nitrogen to solar abundance, as this im-
proved not only the Nv/C iii fit, but also the N iii line at
1183,1185 Å (model g, Fig. 34). Note also that the satu-
rated C iv resonance line is not affected by this change of
the carbon abundance.

If one assumes the conservation of CNO abundances
and believes that the abundances produced in the inner-
most part of the star appear in the same ratio at the sur-
face of the star, then the results obtained above for the
CNO abundances indicate that the ZAMS abundances of
the light elements in alpha Cam deviate from the solar
values. (Latest evolutionary calculations by Meynet and
Maeder (2000) incorporating the effects of rotational mix-
ing show that processed material is more efficiently trans-
ported to the surface than previously thought.) Our analy-
sis shows a nitrogen overabundance relative to carbon and
oxygen; whether this will have implications concerning the
metal dependence of the formation of massive stars is not
clear at this time.

Lowering the effective temperature further to 28000K
worsens the fit, as the iron and nickel lines around 1500 Å
become too strong (Fig. 35). As the strength of these lines
depends also on the mass loss rate, it is conceivable that
an adaptation of this parameter can again improve the fit.
However, Ṁ is strongly constrained by the strength of the
He ii line, as demonstrated in figures 36 (Ṁ = 2.5) and 37
(Ṁ = 10). We have confirmed in test calculations that
the iron abundance must be solar (Z = 1.0) to reproduce
the observed spectrum and to account for the radiative
acceleration needed to produce the observed mass loss rate
(cf. Pauldrach 1987), a finding compatible with our earlier
statement concerning the relative abundances of iron to
the light CNO elements.

Finally, we wish to illustrate the influence of the shocks
on the ionizing flux of α Cam. In Figure 38 we compare
the ionizing flux of our S-30 supergiant grid model, where
shocks have been neglected, to that of our model e for
α Cam. (We have used model e for this comparison, and
not our final model g, since model e and the grid star S-
30 both have the same effective temperature of 30000 K.
The other models (a–j) of course have similar X-ray and
EUV fluxes to that of model e.) Due to the lower opti-
cal depth redward of the He ii edge, the shock radiation
enhances the flux as far as redward as 400 Å; this might
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Fig. 35. Model h. Same as model g, but with Teff = 28000 K.
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Fig. 36. Model i. As model h, but with a lower mass loss rate
(Ṁ = 2.5×10−6 M�/yr compared to Ṁ = 5×10−6 M�/yr for
model h).

have important implications concerning the solution of the
Ne iii problem (cf. Sellmaier et al. 1996), pending further
investigation. Note: the Zanstra integral for He ii is in-
creased from logQHe+ = 6.39 for the S-30 model to 15.07
for model e!

(The influence of the shocks on the EUV spectrum
is larger in α Cam than in ζ Puppis, due to the lower
effective temperature and thus overall lower EUV fluxes
– this is in agreement with MacFarlane et al. (1994), who
show how the importance of X-rays decreased from B type
stars and late O types to earlier types. The influence of the
shocks on the whole spectral regime from EUV to radio
has been shown by Pauldrach et al. (1994a, their Fig. 11)
and especially for EUV and UV by Sellmaier et al. (1993);
the expected influence on the ionizing fluxes has also been
discussed by Schaerer and de Koter (1997).)

5. Conclusions

After a long period of work in the areas of non-LTE radia-
tive transfer, hydrodynamics, and atomic physics we have
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Fig. 37. Model j. As before, but with a higher mass loss rate
(Ṁ = 10 × 10−6 M�/yr). Note the change in the strength of
the He ii line.
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Fig. 38. Comparison of the ionizing flux of our S-30 grid star,
where shocks have been neglected, to that of model e, showing
the non-negligible influence of shocks on the ionizing fluxes.

now developed a fast numerical model code for expanding
atmospheres which incorporates for the first time the re-
quired physics without restrictive approximations – rate
equations for individual levels of all ions using detailed
up-to-date atomic models, the equations of stationary ra-
diation hydrodynamics, the energy equation, the radiative
transfer equation including the effects of overlap of numer-
ous spectral lines of different ions, and a realistic descrip-
tion of shock emission from instabilities in the stellar wind
flow – thus making a quantitative analysis of observed
high-resolution UV spectra via comparison with synthetic
spectra reasonable. One of the most complicating effects in
this complex physical system is the overlap of thousands of
spectral lines of different ions. Especially concerning this
latter point we have made significant progress with regard
to our model code; the decisive factor has been to relax
some rather severe approximations concerning the correct
treatment of Doppler-shifted line radiation transport and
the corresponding coupling with the radiative rates in the
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rate equations. We have demonstrated that these modifi-
cations to the models concerning the energy distributions,
ionizing continua, and line spectra lead to much better
agreement with the observed UV spectra. This has im-
portant repercussions for the quantitative analysis of hot
star spectra.

With this new method in hand we have already pre-
sented a new basic model grid of stars of solar metallicity
that can be used as input for the analysis of spectra of
emission line nebulae. The qualitative diagnostic investi-
gation performed on basis of the model grid revealed that
for the most massive stars of our sample (HD 93129A
and HD 93250) the oxygen abundance is considerably re-
duced compared to the solar value. In fact, it is conceivable
that these stars are extremely massive precisely because
the cooling behavior of the protostellar clouds from which
they formed is correlated with a lower oxygen abundance.
This would mean, however, that a lower oxygen abundance
should be observed in all massive stars younger than O5.
This conclusion is in addition supported by the fact that
no very strong O v lines are observed for this kind of ob-
jects.

From the first detailed analysis of the O9.5 supergiant
α Cam we conclude that our spectrum synthesis technique
does, in principle, allow the determination of effective tem-
perature and abundances – in fact, a determination of the
effective temperature to within ±1000 K and of the abun-
dances to within a factor of 2 seems not unreasonable.
Carbon and phosphorus show clear signs of an underabun-
dance on the order of one tenth its solar value, as does oxy-
gen with about 0.3 solar, whereas the abundance of iron
must be roughly solar to reproduce the spectrum of the
numerous Fe iv and Fev lines. To produce the ionization
balance observed in the lighter elements C, N, O, and Si,
the influence of shock radiation must start at larger radii
where for shorter wavelengths the largest shock tempera-
tures dominate. Thus, the way the X-ray spectral region
selectively affects the ionization balance of different ele-
ments, observable through the lines in the EUV spectrum,
provides constraints on the lower shock temperatures; we
have determined maximum shock temperatures on the or-
der of 2.0×106 K. Especially the Si iii and C iii lines have
been found to be invaluable diagnostic instruments for this
purpose. Our detailed analysis of the UV spectrum and
the shocks needed to reproduce the observed lines has led
to a significant difference in the ionizing flux compared to
models without shocks. Thus we conclude that this type
of analysis is indispensable and must be regarded as the
ultimate test for the accuracy of ionizing fluxes from mod-
els.

Our research plan for the future has three major ob-
jectives. First, we will have to implement further improve-
ments to the model atmosphere code, especially concern-
ing the planned analysis of optical lines. For this pur-
pose Stark broadening has to be included for the af-
fected spectral lines (e. g., H and He i lines) and concern-
ing the rate equations instead of using the Sobolev-plus-
continuum method some of these lines should be treated

in the comoving frame, if they are used for diagnostic
purposes (cf. Sellmaier et al. 1993, who found that com-
pared to the comoving frame treatment the Sobolev-plus-
continuum approximation leads to a non-negligible change
of the strength of some H and He lines). In connection
with this some minor approximations will also have to be
checked in detail.

Second, we plan to apply the model atmosphere code
to a comprehensive sample of stars of different metallicities
for modelling ionizing fluxes and line spectra, the qualita-
tive review of the model grid presented in this paper being
just a first step for a detailed quantitative analysis of ion-
izing fluxes and quantitative verification of the accuracy
and reliability of the models. Furthermore, spectral anal-
ysis in the UV and the optical range of individual stellar
objects in Local Group galaxies and in galaxies as distant
as the Virgo Cluster will be performed.

Third, we plan on using the technique of population
synthesis to calculate integrated spectra for a large range
of stellar metallicities from synthetic UV spectra of our
new models, for the determination of stellar abundances
and the physical properties of the most UV-luminous stars
in star-forming galaxies even at high redshifts. With our
new diagnostic tool of detailed models for expanding at-
mospheres, and the observations of the HST space obser-
vatory and the ESO VLT ground-based telescope which
are already available, the concept of using luminous hot
stars for quantitative UV spectral analyses for determin-
ing the properties of young populations in galaxies is not
only reasonable, but first tentative steps in this direc-
tion have already been taken (see, for instance, Mehlert et
al. (2000, 2001), whose first diagnostic investigations have
shown that, considering proper reddening, the spectra of
galaxies they had observed at high redshifts (z ∼ 3) can
in principle be fitted with synthetic spectra from our hot
star models).
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Appendix A: A new concept for a fast solution of

the Rybicki-method

Here we present for the solution of the Rybicki-scheme a con-
cept which is compared to the standard procedure 10 times
faster on a vector processor and 3 to 5 times faster on a scalar
processor (see Sec. 3.3).
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We start from the final system for the solution of the mean
intensity – the vector J describes its depth variation (the num-
ber of depth points is N):

J = W−1
Q (A.1)

with (N ′ is the number of p-rays)

W = W̃ − 1 = −1−

N ′

∑

j=1

T−1
j Uj, Q = −

N ′

∑

j=1

T−1
j Kj (A.2)

where

Tj = T ′

jw
−1
j , wj =







w1,j

.. .

wNj ,j






, (A.3)

and Nj is the number of radius points for the jth p-ray
(cf. Fig. 6). wj is the diagonal matrix of the integration weights,
and T ′

j is a tri-diagonal matrix defined by the coefficients of the
difference equation of transfer

ai,jui−1,j + bi,jui,j + ci,jui+1,j − βiJi = (1 − βi)Si (A.4)

where ai,j , bi,j , and ci,j are the coefficients as in eq. 20 (sec-
tion 3.3.1) for the jth p-ray,

T ′
j =







b1,j c1,j

. . .
. ..

. . .

aNj ,j bNj ,j






. (A.5)

The variables ui,j are the symmetric averages of the intensities,
the coefficients βi are the ratios of Thomson-opacities to total
opacities, and the diagonal matrix Uj and the vector Kj are
defined as

Uj =







−β1

. . .

−βNj






Kj =







(1 − β 1 )S 1

...
(1 − βNj )SNj






. (A.6)

The usual, but time-consuming solution method is to calculate
the inverse matrices T−1

j – by a forward-elimination and back-
substitution procedure – and from these, obtaining Q and W ,
and, finally, J.

Due to the diagonal character of the matrix Uj this is,
however, not necessary, because from the solution of the first
column of W̃ obtained by using just the first column of Uj

in eq. A.2 the solutions of the remaining columns of W̃ can
be generated. Hence, the elimination procedure only has to
be applied to the following two sets of equations (N ′

i is the
maximum number of p-rays for the ith radius point):

Qi = −

N ′
i

∑

j=1

K̃j,i1 (A.7)

W̃i,1 = −

N ′
i

∑

j=1

Ũj,i = −

N ′
i

∑

j=1

B̃j,iVj,1 (A.8)

with

K̃j = T−1
j Kj, B̃j = T−1

j Bj (A.9)

where

Vj,1 =







−β1

...
−β1






Bj =









1
0
...
0









. (A.10)

Note that since the solution procedure is not recursive with
respect to the index j the elimination can be performed si-
multaneously for all p-rays. Note further that the structure of
the sums in eqs. A.7 and A.8 are equivalent to the operations
x = A · y where A is a triangular matrix. Thus, blas level-2
routines can be applied.

For the construction of the remaining columns of W we
now make use of the already calculated matrix B̃j,i and two
auxiliary matrices obtained as a byproduct during the forward-
elimination procedure by solving eq. A.8.

The first one is:

F ′
j,i = F ′

j,i−1fj,i, i = 1, . . . ,N − 1 (A.11)

with

F ′

j,0 = 1, fj,i = −aj,i+1/b̃j,i. (A.12)

Here b̃j,i is the updated value of bj,i obtained after the forward-
elimination step by solving eq. A.8 (b̃j,i+1 = bj,i+1 + fj,icj,i).

The second one is:

F ′′

j,i = F ′′

j,i+1gj,i, i = N − 1, . . . , 1 (A.13)

with

F ′′

j,N = 1, F ′′

N ′
i
,i = 1, gj,i = −cj,i/b̃j,i. (A.14)

The final step – construction of the columns l = 2, . . . ,N
of W (where l denotes the position of the unity value for the
vector Bj in eq. A.10) – consists of two parts, where the first
part replaces the forward-elimination and the second part the
back-substitution procedure:

In the first part the components i = l, . . . ,N of the lth
column of W̃ are determined by

W̃i,l = −

N ′
i

∑

j=1

B̃j,iV
′

j,l (A.15)

where

V ′
j,l = Vj,l/F ′

j,l−1. (A.16)

Again, a triangular matrix has simply to be multiplied by a
vector using a blas level-2 routine.

In the second part the components i = l − 1, . . . , 1 of the
lth column of W̃ are determined by

W̃i,l = −

N ′
l

∑

j=1

F ′′

j,iV
′′

j,l (A.17)

where

V ′′

j,l = V ′

j,lB̃j,l/F ′′

j,l. (A.18)

Now, a rectangular matrix has simply to be multiplied by a
vector again using a blas level-2 routine. Hence, instead of a
number of operations ∼ N3 a number of operations only ∼ N2

must be performed, and as extremely fast routines are used
to solve the non-recursive system, the solution of the Rybicki-
scheme is now almost as fast as the solution of the moments
equation.



34 A.W. A.Pauldrach et al.: NLTE line blocking and blanketing

0

0.5

1

1.5

2

0 2 4 6 8 10

In
te

ns
ity

 u

Spatial coordinate z

(all curves)

0

0.5

1

1.5

2

0 2 4 6 8 10

In
te

ns
ity

 u

Spatial coordinate z

old method, 1500 points

old method,   500 points

old method,   200 points

old method,   100 points

new method  (all curves)

Fig. B.1. Upper panel: Mean intensity in a one-dimensional
nebula; constant source function, high opacity on the left
(shaded in gray), low opacity on the right. Both discretiza-
tion methods give the same results. Lower panel: If the first
grid point with low opacity is given a high source function, the
old method produces artificial emission. The new method does
not show this behavior.

Appendix B: A simple demonstration of

the failure of the standard

τ discretization of the

equation of transfer

Let us assume a one-dimensional, sharply bounded cloud of
material of moderate opacity,

χ =

{

1, |z| < 5
10−10, |z| ≥ 5

(B.1)

with a symmetric boundary condition at z = 0 (the middle
of the cloud) and no influx from the outside (i. e., I− = 0 at
z = 10).

With a constant source function S = 1 everywhere, both
the old and the new discretization of the transfer equation yield
essentially the same radiation field (upper panel of Figure B.1),
a solution which is immediately obvious: The center of the
cloud (z = 0) is optically thick, the intensity there thus equal
to the source function. Towards the edge of the cloud, more
and more radiation escapes, and the intensity decreases. On
the outside of the cloud, essentially no emission is produced

(nothing is absorbed, either); only the radiation emitted by
the cloud contributes to the local intensity (since we have no
influx from the right), therefore u = 1

2
S.

The results change considerably if we adopt a high source
function of S = 100 for the single grid point at z = 5, the
first grid point outside of the cloud. As illustrated in the lower
panel of Figure B.1, the old method produces extra emission
on a scale of

∆I =
1

2
S · ∆τ ≈

1

2
100 ·

1

2
(1 + 10−10)∆z (B.2)

≈
1

4
100∆z. (B.3)

For the grid with 100 points, ∆z = 0.1, giving us an intensity

u ≈ 0.5 +
1

2
·
1

4
100 · 0.1 = 1.75 (B.4)

outside the cloud. (0.5 is from the normal emission of the cloud
as before, and the factor 1/2 in the second term is again due to
the fact that u = 1

2
(I++I−), with I− = 0 on the outside of the

cloud, so that u = 1
2
I+.) The extra emission is proportionally

reduced in the finer grids as ∆z gets smaller.
The new method, on the other hand, is essentially indiffer-

ent to the grid spacing in this particular configuration, since
the emission is only computed on the basis of the local opacity,
which is low for the point in question. If we were to choose a
point inside the cloud to have a high source function, then both
methods again produce similar results, also dependent on grid
spacing, since in this case the point in question does have a
high opacity, and therefore produces substantial emission pro-
portional to the interval length.

Concluding, it can be said that the discretization methods
differ in the assumptions that are made about the emissivity
(in the old method, based on average values of opacity and
source function assuming linear run between the grid points;
in the new method, extrapolating the local value) – informa-
tion not available given just the values at the grid points, and
which must therefore be supplied separately through the choice
of discretization coefficients. It just so happens that the new
method produces results which are more compatible with our
detailed formal integral.
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