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Abstract

We perform hydrodynamical simulations of a young galactic disc embedded in a hot

gaseous halo. We take into account the (static) gravitational potentials due to a dark

matter halo, a stellar bulge and a disc of stars and gas. Two different implementations for

star formation are compared. These are one approach based on the local Jeans mass,

and another by a local Kennicutt-Schmidt law. Supernovae are triggered randomly

and have predetermined event sizes of several tens to hundreds. Three different setup

configurations of the disc-halo system are tested, while we improve the setup parameters

step by step. We further investigate different halo gas pressures and energy injection

methods.

Many of our simulated galaxies, but not all, develop bipolar outflows. We characterise

the strength of the outflow by mass and energy outflow rates, and investigate the effect

of changes to the details of the model. We find that supernovae are more effective

if comprised into larger superbubbles. The weight of the halo gas is able to quench

galactic outflows. Buoyancy, though having a measurable effect, and clearly helpful to

get superbubbles out of the disc, is too weak to drive the wind by itself. Thermal energy

is found to be the dominant wind driver in our simulations. Overall, we find rather low

mass and energy outflow rates which do not exceed the star formation rate and about ten

percent of the energy injection rate, respectively. The latter finding potentially disagrees

with observations and might thus point to a missing element in our simulations.
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Chapter 1

Preface/Introduction

1.1 Observations of galactic winds

Disc galaxies at high redshifts form hierarcically in the center of dark matter (DM)

haloes. These haloes exist in a wide range of masses, however, one would theoretically

expect more DM haloes than observed. In addition to this so-called halo occupation,

observations reveal a baryon fraction below the cosmic average value, which is commonly

known as the “missing baryons”-problem. The largest amount of baryons can be found

in haloes within a range of 1010 to 1012 M⊙, which leads to the assumption that for

lower masses baryonic matter is ejected in significant amounts to prohibit the gas from

accumulating and settling into a disc. One mechanism capable of transporting mass

from the host galaxy into the intergalactic medium, especially powerful in low-mass

galaxies, are galactic winds.

Galactic winds are found in nearby starburst galaxies [for a review see Veilleux, Cecil

and Bland-Hawthorn, 2005]. Enhanced star formation in the central areas of galactic

discs triggers supernova (SN) explosions of massive stars. This increases the level of

internal as well as turbulent energy in these areas. The dynamical equilibrium between

the disc and the surrounding hot halo is therefore disturbed, which results in an outflow

of the interstellar medium (ISM) perpendicular to the disc.

Phenomenologically, the stars form in clusters. The SN feedback quickly evacuates these

sites by forming hot bubbles. The star formation is hence quickly terminated [Förster

Schreiber et al., 2003], the bubbles overlap and form the wind. The outflowing ISM forms

filaments that are observed in optical emission lines, but also in soft X-rays (Figure 1.1).

At high redshift, Lyman break galaxies (LBG) show Lyman-α absorption, typically

7



8 Preface/Introduction

Figure 1.1: Messier 82. X-ray: blue; optical: green and orange; infrared: red.

M82 is a nearby starburst galaxy with a galactic wind. The stellar disc is shown

here in green, the multiphase outflow is seen in X-ray and other bands. Source:

Chandra homepage.

blue-shifted with respect to the emission by a few hundred km s−1 [Steidel et al., 2003].

Where the line profile is observed with sufficient signal-to-noise, clear shell signatures

are detected: The absorption is blue-shifted with respect to systemic tracers, and the

re-emission from the receding shell is seen red-shifted by the same velocity [Pettini et al.,

2002]. Lyman break galaxies are probably an order of magnitude smaller than the more

massive galaxies detected by the Spectroscopic Imaging survey in the Near-infrared with

SINFONI (SINS). They form stars dominantly in a steady mode, tens of solar masses per

year [Pettini et al., 2001, Shapley et al., 2003]. The shells are unambiguous evidence for

galactic winds. They are expected to arise in hot galaxy haloes, when the leading bow

shock has a low Mach number. Hence, shells with velocities of a few hundred km s−1 are

evidence for a hot halo with a temperature of about 106 K. For such low Mach number

shocks, the post-shock gas cools faster than the pre-shock gas. The under-pressured cold
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gas is then compressed in a thin shell. One would expect such shells to be destroyed

after a while by surrounding gas streams or the Rayleigh-Taylor (RT) instability:

tRT = 1.5Myr

(

R

kpc

)3/2(
Mgal

1011 M⊙

)−1/2

, (1.1)

where R is the shell radius and Mgal the gravitating mass within that radius. The shell’s

deceleration is expected to protect small shells (≃ 1 kpc), only. The ubiquity of the

absorption lines then points at constant re-formation of the shells. At redshifts above

two, galaxies with much higher star formation rates are observed. The SINS-sample

[Genzel et al., 2008] contains massive (few 1010 M⊙ gas) disc galaxies. The observed Hα

emission suggests star formation rates of about a hundred solar masses per year. This

massive star formation leads to a high level of turbulence (≃ 50− 80 km s−1), observed

via integral field spectroscopy. These gas discs are thick (1 kpc) and might be related to

the old stellar disc of the Milky Way. In analogy to the low redshift case, even stronger

winds are expected. Similar results have been found by other groups [Law et al., 2007,

Bournaud et al., 2008, van Starkenburg et al., 2008, Kassin et al., 2007]. While also

mergers may in principle induce high levels of turbulence, these observational results

point to a high fraction of relaxed systems yet with a high level of turbulence. Wind

shells have been inferred for Lyα blobs [Ohyama et al., 2003]. Another piece of the

puzzle are high redshift radio galaxies. These galaxies show very bright Lyα emission,

which make a detection of the receding shell impossible. However, they also show blue-

shifted absorption at very similar velocities as in the LBG case [van Ojik et al., 1997,

Wilman et al., 2004]. In a careful evaluation of the available models, Krause [2005] has

argued for a galactic wind origin of these absorption systems. The main reason against

a relation to the jet is that the shell would have to emit strong Lyα, rather than causing

absorption, which is not observed. When the jets grow to the scale of the shells, they

destroy them via the RT instability. The model predicts therefore a critical scale, which

is indeed observed, and determined to 50 kpc [van Ojik et al., 1997]. The model also

requires that the starburst episode precedes the jet episode by about 100 Myr, consistent

with starburst-AGN delays observed elsewhere [e.g. Davies et al., 2007]. Radio galaxies

are the most massive galaxies at their redshift, and hence, their parent population could

well be the SINS galaxies described above. The driving power for the radio galaxy wind

shells is about one SN per year, requiring a star formation rate of order hundred solar

masses per year, which is also consistent with the massive SINS galaxies. Shapiro et al.

[2009] observed rapidly star-forming galaxies at z = 2, finding a broad high-velocity

component with a fitted line width of FWHM > 1500 km s−1 or 500 km s−1, dependent
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on modelling as a single Gaussian or as broad wings on the Hα and [N II] features,

respectively. It is argued that if this emission arises due to starburst-driven galactic

winds the mass outflow rate should be slightly higher than the SFR. Nevertheless, it yet

remains to be clearly determined if the broad line emission is due to galactic winds or

the active supermassive black hole in the galactic center. Sharp and Bland-Hawthorn

[2010] have observed various different types of driving mechanisms: Starburst-driven

winds are found to be delayed by at least 10 Myr after the onset of star formation;

Sharp and Bland-Hawthorn [2010] propose a series of events leading to the onset of a

wind which is not supposed to occur before large fractions of dense gas clouds have

evaporated by UV irradiation. It is further stated that winds can arise due to processes

related to the Active Galactic Nucleus (AGN), however, the data currently available do

not allow exact statements about the main energy sources responsible for the wind in

this case.

1.2 Theoretical work on galactic winds

The centers of nearby starburst galaxies are now reasonably well understood. 3D hy-

drodynamics simulations reproduced the outflow of the multiphase ISM, observed in

emission lines and X-rays [Cooper et al., 2008]. In particular, Cooper et al. [2008, 2009]

simulated wind formation in clumpy, nonisotropic discs by continuous energy injection

proportional to the gas density. They have shown that the wind is driven by a series

of SN bubbles following the path of least resistance in order to flow freely into the

halo. Within such a flow, dense clouds within the disc break up by Kelvin-Helmholtz

instability and form filaments. On the small scale, wind asymmetries or collimation are

likely to arise from an inhomogeneous ISM. In addition, 3D simulations have been per-

formed by Cooper et al. [2009], in which galactic wind interaction with a radiative cloud

is further investigated with the aim of specifying possible survival mechanisms of the

latter. In contrast to adiabatic clouds, radiative clouds are not destroyed quickly, but

rather break up into several dense cloudlets, drawn along by the flow to form filamen-

tary structures. The number of fragments is strongly affected by numerical resolution.

Razoumov [2009] studied the multiphase ISM in protogalactic clumps, modelling the

formation of winds from the latter while undergoing a starburst. Star formation in their

simulations is based on both local density and a Jeans mass criterion. They find that

during SF episodes the neutral gas outflows have velocity widhts of several 100 km s−1.

It is lined out that the outflows are only efficient when clouds colder than T = 300K

and denser than 100M⊙ pc3, are resolved at grid resolution of 12 pc. It is shown that
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a 24 pc resolution is necessary for the first signs of multiphase ISM to occur, however,

with star formation being suppressed by a series of effects: higher resolution results in

an increase of cold, dense star-forming clumps, whereas the density in individual clumps

is found to be higher than in models of low resolution. In turn, the high star formation

rate results in a larger volume filling factor of hot gas, which ultimately determines the

amount of energy provided to the wind.

Energy is injected into the ISM, mainly by SN explosions, as described by Fujita et al.

[2009], who modelled the effects of repeated SN explosions driving supershells in the

central disc region at a resolution of < 0.2 pc. The shells cool quickly and become RT

unstable. Observed wide NaI absorption lines are suggested to arise from these multiple

fragmented shells traveling at different velocities. They conclude that the cool gas

kinematics seen in NaI absorption can be explained by an energy-driven bubble causing

RT instability without invoking further physics. Though, a number of other drivers

has been investigated so far; including e.g. starbursts and supersonic turbulence. Nath

and Silk [2009] propose a model of starburst-driven galactic outflows that arise due to

both radiation and thermal pressure. An expanding shell of gas and dust is assumed

to form by radiative pressure from massive stellar populations at first; when the most

massive of these stars turn into SNe, a second inner shell of SN ejecta will soon collide

with the outer shell resulting in fragmentation of the latter due to RT instability. The

remaining fragments are shown to be an explanation for various phenomena observed

recently in Lyman break systems. Scannapieco and Brüggen [2010] performed 3D AMR

simulations of dwarf galaxy outflows driven by supersonic turbulence. The energy from

SNe is directly deposited into the large-scale turbulent motion. Shell interactions around

individual OB associations lead to the formation of chaotic Hα structures, including

numerous smaller SN bubbles. Outflows then develop from overlap of a series of the

latter, rather than from a single large superbubble. The overpressure within such an

overlap region then pushes out its way into the IGM causing a blow-out, where RT

instability of the surrounding bubble only plays a minor role.

Energy injection drives turbulence [Wada and Norman, 2007]; much of the turbulent

energy is dissipated radiatively within the galaxy [Dubois and Teyssier, 2008], some,

in detail unknown fraction is available for ”kinematic dissipation”. For the latter, two

classes of hydrodynamic models are available: a supersonic wind [e.g. Cooper et al.,

2008, Dubois and Teyssier, 2008], and a subsonic convection zone [Kritsuk, Plewa and

Müller, 2001; Dubois and Teyssier, 2008]. Supersonic winds are headed by bow shocks

in the surrounding medium. Whenever the Mach number is only slightly supersonic,

the postshock gas may cool first, and form a possibly low metallicity absorption system
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[Dyson, Falle and Perry, 1980]. Such a wind shell is typically stabilised against the RT

instability by its own deceleration, but for a few kpc only. External events, like a jet

impact [Krause, 2005], or a density decline steeper than r−2 [Ferrara and Ricotti, 2006],

at the latest, will shatter the shell. The fragments can be partly molecular and are likely

to form stars [Krause, 2005, and references therein]. The remaining hot gas overtakes the

fragments, which may be pulled back into the galaxy. Now another bow shock may form,

if the outflow is energetic enough. Otherwise, a convection zone forms [Kritsuk et al.,

2001]. The occurrance of a supersonic wind is governed by the ratio of energy injection

to mass injection into the system [Gaibler, Camenzind and Krause, 2005]. The latter

includes both, mass injection due to inflows and stellar evolution. If the critical value is

not reached, a subsonic convection zone may still form. In the galaxy evolution context,

this is often called ”galactic fountain”. The multi-phase turbulence in these convection

zones produces additional radiative dissipation. Some energy might be radiated as sound

waves. Dissipation of the sound waves heats the surrounding halo. Thus, a convection

zone in the galaxy evolution context may be regarded as an antenna, which efficiently

extracts energy from the system. All the parts of a galactic convection zone have been

well studied in NGC 1275, the central galaxy of the Perseus cluster, where, however,

the main power source is likely the active nucleus [Conselice, Gallagher and Wyse, 2001,

Fabian et al., 2006, 2008]. No further observations of radiated sound waves apart from

the Perseus cluster are known yet, whereas in the latter the sound waves are likely

correlated to the active galactic nucleus (AGN) [Conselice et al., 2001]. The existence

of galactic outflow-related sound waves in other galaxies is therefore highly speculative,

but generally possible. The sound waves within and surrounding the convection zones

may well steepen into weak shocks, and also form absorption systems, if the halo is not

too hot (i.e. the cooling time is not too long). Dubois and Teyssier [2008] have proposed

a wind solution for lower mass galaxies, like LBG’s, and a convective solution for more

massive systems, like the massive SINS galaxies, if the star formation history is more

quiescent. However, this result depends very much on the ratio between mass injection

and SN rate. A small system may live with a convective halo, if it manages to sustain

higher gas inflow rates. A more massive system may have strong winds, if the inflow

is stopped for some time, e.g. triggered by the energetic outburst of an active galactic

nucleus.
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1.3 Aim of this work

The aim of this project is to simulate the evolution of the disc-halo interaction for

high-redshift galaxies with a grid-based hydrodynamics code in 3D. Both wind and

convective solutions shall be investigated. We aim to follow the evolution of the systems

for several 100Myr. In contrast to previous work, we propose a systematic parameter

study. As initial conditions, we would take realistic forming galaxies from a cosmological

hydrodynamics simulation.

This work will in particular address the question how to channel the required amount of

energy into a galactic outflow, so that the latter can grow strong enough to escape from

the galactic disc. Our work is therefore at the interface between more ISM centred work

[e.g. de Avillez and Breitschwerdt, 2004, 2005] and papers that use the effect of winds

with described properties in their simulations [e.g. Springel and Hernquist, 2003]. We

focus on Lyman break galaxies. Winds in these objects have recently been simulated by

Dubois and Teyssier [2008] and Powell et al. [2011]. Dubois and Teyssier [2008] model

their galaxies as cooling and collapsing Navarro-Frenk-White (NFW) spheres, and focus

on the onset of a galactic wind against the ram pressure of the in-falling halo material.

They find that galactic winds arise only in low mass systems with comparatively small

ram pressure, whereas larger ones will typically exhibit galactic fountains instead. Powell

et al. [2011] study high-redshift galaxies (z > 9) which are still in a phase of strong

accretion by filamentary inflow of cold matter. They investigate if galactic winds may

significantly alter the mass accretion rate of young galaxies in order to inhibit their

further growth. They conclude that, though in these violently star-forming systems

strong winds will develop, the accretion rate will not be affected, and hence there will

be enough gas supply for long-lasting, intense star formation.

However, none of the numerical models made so far succeeded in producing a wind

carrying a total energy corresponding to the observations within the order of magnitude.

A variety of different prescriptions for the cooling approach have been proposed; e.g.

the storage of energy within turbulence, as is used by Scannapieco and Brüggen [2010].

Here, we study a situation similar to Dubois and Teyssier [2008]: We study an isolated

disc within a low density halo, using a fixed potential with a dark matter component

according to Navarro, Frenk and White [1997]. This work primarily aims at a general

understanding of the physics behind the development of galactic outflows. We will

therefore perform systematic parameter studies while focusing on the injection of energy.

One point of our interest is the effect of the size of superbubbles on the wind efficiency.

In order to be able to study this, we do not use single SNe like Powell et al. [2011].

Instead, we inject superbubbles with a controlled and systematically varied number of
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SNe per bubble.

1.4 Units and constants

As is customary in most astronomical publications, we applied the CGS unit system in

this work. Exempt from the latter however are units of length and units of time, if not

stated otherwise. The typical length scale found in galactic wind structures and used

herein is the kiloparsec (1 kpc = 1000 pc = 3.086 × 1021 cm). The typical time scale

related to outflow processes is 106 years, or one “mega-year” (1Myr = 3.156 × 1013 s).

These units immediately imply a typical velocity of 1 kpcMyr−1 = 9.8 × 107 cm s−1.

Light speed in units of this typical velocity is c = 307 kpcMyr−1. The Hubble constant

used herein is 72 km s−1 Mpc−1.



Chapter 2

Theory

In this chapter several core concepts of hydrodynamics will be introduced, which form

the theoretical foundation of the presented work. In section 2.1 we will give a brief

introduction to the dynamics, global and local stability of gaseous discs, and explain

different models for DM haloes; both issues constitute the vantage point for our later

numerical setup. Section 2.2 briefly reviews the physics of shock fronts, their temporal

evolution and their propagation in the ISM. Shock fronts are commonly triggered by

supernovae, which are the key ingredient to our later simulations. Section 2.3 comprises

the basics to physically describe the evolution of hydrodynamic systems, which will be

applied in the simulation code in slightly modified form.

2.1 Disc dynamics and external potentials

To set up a rotating gas disc numerically, and maintain a certain level of stability, we

need to understand how stability is defined physically, and what factors contribute to

it. The next subsection deals with global disc stability, defined by the Toomre criterion

[Toomre, 1964]. Globally unstable discs will evolve structures like e.g. spiral arms, and

exhibit a more clumpy density profile. Stability also plays a role on local scales, and

can be described by the Jeans criterion. Instability on local scales is responsible for the

collapse of molecular clouds and hence star formation, and needs to be understood for

the development of our numerical model disc.

15
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2.1.1 Gravitational instability of rotating systems

The uniformly rotating sheet

This summary largely follows the approach of Binney and Tremaine [1987], initially

assuming an infinitely thin disc or sheet of zero thickness, constant surface density Σ0

and constant angular velocity ~Ω = Ω · êz. The sheet is situated in the x-y-plane and

considered uniform in x- and y-direction. Rotational flattening modifies the Poisson

equation of the system, which will be given a reservoir of kinetic energy it can tap into

to feed unstable modes. Considering the frame to rotate with the unperturbed sheet at
~Ω) in order to simplify our analysis, the continuity equation, Euler equation and Poisson

equation read:

∂Σ

∂t
+ ~∇(Σ~v) = 0, (2.1)

∂~v

∂t
+ (~v · ~∇)~v = −

~∇p

Σ
− ~∇Φ− 2~Ω× ~v + Ω2(xêx + yêy), (2.2)

∇2Φ = 4πGΣδ(z), (2.3)

with δ(z) being the Dirac delta function. It is worth noting that equations (2.1) and

(2.2) are defined only in the x-y-plane, whereas equation (2.1) needs to hold in three-

dimensional space as well. Rewriting d~v
dt

= ∂~v
∂t
+(~v · ~∇)~v yields the above Euler equation

(2.2) where the next-to-last term is the Coriolis force, and the last term is the centrifugal

force.

Let the perturbed potential Φ be of the form

Φ(~x, t) = Φ0(~x) + ǫΦ1(~x, t), (2.4)

where ǫ ≪ 1. In the absence of perturbance, equation (2.1) has a trivial solution,

equation (2.2) reduces to

~∇Φ0 = Ω2(xêx + yêy), (2.5)

and equation (2.3) to
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∇2Φ0 = 4πGΣ0δ(z). (2.6)

It is assumed that the opposing gravitational force balances the centrifugal force, as

described by the “Jeans swindle”.

We now assume a small perturbation Σ(x, y, t) = Σ0+ǫΣ1(x, y, t), ~v(x, y, t) = ǫ~v1(x, y, t)

with ǫ ≪ 1. Dropping all terms nonlinear in ǫ, our equations read:

∂Σ1

∂t
+ Σ0

~∇~v1 = 0, (2.7)

∂ ~v1
∂t

= − c2s
Σ0

~∇Σ1 − ~∇Φ1 − 2~Ω× ~v1, (2.8)

∇2Φ1 = 4πGΣ1δ(z), (2.9)

with cs being the sonic speed, defined as

c2s =

[

dp(Σ)

dΣ

]

Σ0

. (2.10)

This set of equations can now be solved by writing Σ1(x, y, t) = Σa · exp[i(~k · ~x − ωt)],

~v1(x, y, t) = (vaxêx+vayêy)·exp[i(~k ·~x−ωt)], and Φ1(x, y, z = 0, t) = Φa ·exp[i(~k ·~x−ωt)].

The x-axis can be chosen parallel to ~k; if we now consider Poisson’s equation (2.9), we

have ∇2Φ1 = 0 for z 6= 0, but Φ1(x, y, z = 0, t) = Φa · exp[i(~k · ~x − ωt)] when z = 0.

The only continuous function approaching zero far from the sheet and satisfying both

constraints is

Φ1(x, y, z = 0, t) = Φa · ei(~k·~x−ωt)−|kz|. (2.11)

In order to relate Φa to Σa, equation (2.9) is integrated from z = −ζ to z = ζ, where ζ

is a positive constant; then the limit of the integral is calculated by letting ζ approach

zero:

lim
ζ→0

ζ
∫

−ζ

∂2Φ1

∂z2
dz =

[

lim
ζ→0

∂Φ1

∂z

]ζ

−ζ

= 4πGΣ1

ζ
∫

−ζ

δ(z)dz = 4πGΣ1. (2.12)
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Therefore,

−2|k|Φa = 4πGΣa, (2.13)

or

Φ1(x, y, z, t) = −2πGΣa

|k| · exp
[

i(~k · ~x− ωt)− |kz|
]

. (2.14)

Inserting the expressions for Σ1, v1 and Φ1 in equations (2.7), (2.8) and (2.9) yields

homogeneous equations in Σa, vax and vay. Any nontrivial solutions can occur only

when

ω2 = 4Ω2 − 2πGΣ0|k|+ k2c2s (2.15)

is fulfilled. (2.15) is the dispersion relation for the uniformly rotating sheet, where Ω is

its pattern speed. Note that, if the latter is zero, the so-called Toomre criterion (com-

pare below) is not fulfilled. The sheet is now stable if ω2 ≥ 0 and unstable if ω2 < 0.

We will now investigate the case of a nonrotating sheet. With the above criteria for ω2

and Ω = 0, (2.15) reads c2sk
2 − 2πGΣ0|k| < 0 for an unstable sheet. Besides, this would

match the Jeans criterion (compare below), meaning that |k| < kJ = 2πGΣ0/c
2
s , with kJ

being the Jeans wavenumber. In other terms, as λ = 2π/k, any non-rotating sheet will

be gravitationally unstable at high wavelengths. Though, there is a major difference

to the Jeans instability: For an infinite and homogeneous sheet having a sound speed

cs = 0, the instability would grow exponentially with exp(γt). Here, the growth rate of

the perturbance would be γ2 = −ω2 = 4πGρ0. For a sheet with zero sound speed and

zero angular speed, the growth rate would be γ2 = 2πGΣ0|k|. This further implies that

a decreasing perturbation wavelength γ will lead to a more extreme instability. In turn,

as λ = 2π/|k| → 0, the growth rate γ will rise to infinity.

A violent instability at short wavelengths would still persist if we assumed a rotat-

ing sheet. At zero sound speed, the dispersion relation (2.15) demands instability of

perturbations with wavenumber |k| > 2Ω2/πGΣ0. Their growth rate would then be

γ2 = −ω2 = 2πGΣ0|k| − 4Ω2, again being divergent as λ approaches zero, which means

that neither pressure nor rotation cannot suppress this phenomenon alone.

However, though rotation and pressure alone fail to stabilize the sheet, respectively,

both together can do. The rotating sheet with zero sound speed is unstable at small

wavelengths, whereas a nonrotating sheet with a given nonzero sound speed is unstable
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at large wavelengths. Under presence of both effects, the right side of (2.15) is quadratic

in k, with the minimum of that curve being at |k| = πGΣ0/c
2
s = 1

2
kJ. As long as the

minimum is positive, the sheet will be stable at all wavelengths. The condition for this,

csΩ

GΣ0

≥ π

2
= 1.5708, (2.16)

is also known as Toomre’s stability criterion. A simple physical interpretation to the

same has been given by Toomre [1964]:

A circular area of radius ∆R is assumed, at random position within the sheet. Reducing

its radius by 1 − α with α ≪ 1 will evoke a pressure perturbation p1 ≈ αp0 ≈ α c2sΣ0.

The pressure force per unit mass is given by ~Fp = −∇p/Σ, resulting in an additional

outward pressure force of order |~Fp1| ≈ α c2s/∆R, where ~Fp = −~∇p/Σ is the pressure

force per unit mass. The decrease in radius will further give rise to an additional inward

gravitation force, |~FG1| ≈ GMα/(∆R)2. The sheet is considered stable if |~Fp1| > |~FG1|,
and all other perturbing effects are neglected.

For reasons of simplicity, it was assumed in this analysis that the sheet is infinitely thin.

However, there are models for three-dimensional structures, e.g. a uniformly rotating

isothermal disc, whose vertical structure is given by the equation of state. An analytical

calculation of the stability of these systems was made by Goldreich and Lynden-Bell

[1965], who found a stability criterion of

csΩ

GΣ0

≥ 1.06. (2.17)

Conclusively, some notable properties of the uniformly rotating sheet can be lined out:

On the one hand, we find that cold sheets are highly unstable. On the other hand, a

sound speed cs satisfying the stability criterion (2.16) will be sufficent to stabilize the

sheet.

Local stability of differentially rotating discs

From the previous results, a more handy parameter for instability can now be derived.

In order to do so, the model needs to be expanded from the uniformly rotating sheet

to the more practical case of a differentially rotating disc. For this purpose, we have a

look at a particle in an elliptical orbit and allow the frame to rotate at pattern speed Ω.

The particle will now, in good approximation, describe an epicycle motion within the
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frame, with an epicycle frequency κ.

In particular, the stability criterion for a uniformly rotating sheet is a special case where

κ = 2Ω. For a differentially rotating disc, it further has to be considered that cs, κ and

Σ are all functions of radius. This in turn implies that any stability parameter is locally

determined, and, likewise, is a function of radius.

We investigate the case of a gas disc with differential rotation. The dispersion relation

(2.15) can be generalized to

ω2 = κ2 − 2πGΣ|k|+ k2c2s . (2.18)

In analogy to the situation described above, the disc turns out to be unstable for ω2 < 0,

as the perturbation is growing exponentially due to ω being a nonreal number and the

amplitude being exp(−iωt). Thence, the line of neutral stability is

κ2 − 2πGΣ|k|+ k2c2s = 0. (2.19)

Furthermore, stability against all axisymmetric perturbations would require that equa-

tion (2.19) has no solution for positive |k|-values. Solving this quadratic equation finally

results in a dimensionless stability parameter Q for the gas disc:

Q ≡ csκ

πGΣ
> 1. (2.20)

The number Q is known as Toomre’s stability parameter. It is worth noting here

that a very similar criterion for stellar discs can be obtained from (2.20) by simply

replacing the sound speed cs by the stellar velocity dispersion σR, and π by 3.36, re-

spectively [Binney and Tremaine, 1987]. The temperature of a disc can generally be

measured via Toomre’s Q: “Hot” discs show high velocity dispersions resulting in high

Q values, whereas “cool” discs with low velocity dispersions are violently unstable as Q

mapproaches zero, as stated previously.

2.1.2 Jeans instability

The second form of instability, which is to be discussed herein, is the Jeans instability,

which is based on the consideration that a gravitating homogeneous medium is at equi-

librium. Generally, a static equilibrium state for any infinite homogeneous gravitating

system can impossibly exist. As this constraint needs to be bypassed, we have to make
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use of the so-called “Jeans swindle”, which has been developed in the course of the

studies by Jeans [1902]:

Mathematically, the difficulty is that if the density ρ0 and pressure p0 of the medium

are constant, and the mean velocity ~v0 = 0, Euler’s equation will lead to

~∇Φ0 = 0, (2.21)

whereas Poisson’s equation, however, demands that

∇2Φ0 = 4πGρ0. (2.22)

Unless the density ρ0 equals zero, these two requirements are inconsistent. This incon-

sistency can nevertheless be overcome by the ad-hoc assumption that the unperturbed

potential is zero and henceforth Poisson’s equation only describes the relation between

the perturbed density and the perturbed potential. The swindle however lacks a formal

justification, and its consistency needs to be checked for every single case, respectively,

yet it is justified for some applications. Examples can be found in Binney and Tremaine

[1987].

Physical basis of the Jeans instability

We consider a sphere of radius r at some point within an infinite homogeneous and

motionless fluid of density ρ0 and pressure p0. Compressing the volume V of the sphere

to V (1 − α), α ≪ 1 will trigger a density and pressure perturbation of ρ1 ≃ αρ0 and

p1 ≃ (dp/dρ)0αρ0 = α c2sρ0. The resulting outward pressure force ~Fp1, in addition

to the already present pressure force per unit mass, ~Fp = −~∇p/ρ, is of magnitude

|~Fp1| = |~∇p1/ρ0| ≃ p1/(ρ0r) ≃ α c2s/r, with ~∇ → 1/r. Simultaneously, the increase in

density causes an additional inward gravitational force ~FG1 = −~∇Φ1. Within the order

of magnitude, |~FG1| ≃ GMα/r2 ≃ GMρ0rα. Instability will occur as soon as the net

force ~Fp1 + ~FG1 is directed inwards, meaning |~FG1| > |~Fp1|, or, approximately,

GMρ0rα > α c2s/r. (2.23)

Thus, any perturbation with a scale longer than r ≃ cs/
√
Gρ0 is unstable.
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The Jeans instability for a fluid

Applying the Jeans swindle, the linearised fluid equations [Binney and Tremaine, 1987]

at equilibrium state (i.e. ρ0 = const, ~v0 = 0) transform into

∂ρ1
∂t

+ ρ0~∇ · ~v1 = 0 (2.24)

∂~v1
∂t

= −~∇h1 − ~∇Φ1 (2.25)

∇2Φ1 = 4πGρ1 (2.26)

h1 = c2sρ1/ρ0. (2.27)

By differentiating equation (2.24) by time, calculating the divergence of equation (2.25),

and eliminating ~v1, Φ1 and h1, the equations above can be reduced to

∂2ρ1
∂t2

− c2s∇2ρ1 − 4πGρ0ρ1 = 0. (2.28)

Due to homogeneity, the coefficients of the partial derivatives in equation (2.28) are

independent of position and time, e.g. cs = const. Granted the dispersion relation

ω2 = c2sk
2 − 4πGρ0 (2.29)

is fulfilled by ω and k = |~k|, a trial solution of the form

ρ1(~x, t) = Cei(
~k·~x−ωt) (2.30)

is required to easily solve equation (2.28). Considering a small density ρ0 or wavelength

λ = 2π/k equation (2.29) reduces to the dispersion relation of a sound wave: ω2 = c2sk
2.

If ω2 < 0, we obtain solutions which are exponentially growing or decaying. Their time

dependence can be expressed by e±γt, with ω2 = −γ2. If the solution is growing, the

system will be unstable. This is the case if

k2 < k2
J ≡

4πGρ0
c2s

. (2.31)
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kJ here is called the Jeans wavenumber for the fluid. To the latter, the Jeans length

λJ = 2π/kJ is related; it marks the upper boundary for λ if the solution shall be stable.

One can further define a Jeans mass MJ as the mass which is comprised within a

sphere of diameter λJ:

MJ =
4π

3
ρ0

(

1

2
λJ

)3

=
1

6
πρ0

(

π c2s
Gρ0

)3/2

. (2.32)

Analogically, if this Jeans mass is overgone within the given sphere of diameter λJ, the

solution will be unstable.

The Jeans mass will play a crucial role later on in the presented work. We will introduce

two different star formation recipes for use in the numerical models; one of these will

be based on a Jeans mass criterion to locally determine the possibility of star formation

and hence supernova feedback.

2.1.3 Rotational velocity

The correct calculation of rotational velocities in a galactic disc system is imperative

for later simulation setup. Keplerian rotation represents the most fundamental form

of orbital motion, which can be applied to any particle orbiting around a considerably

larger point mass. However, gas particles within the disc orbit the galactic centre at

a velocity which differs from Keplerian orbit velocity in three major aspects: Firstly,

we consider the disc mass to be spread out within a cutoff radius R. Particles on

circular orbit at a distance R′ < R from the centre will feel a centripetal force from

the cumulative mass Mcum = 2π
∫ R′

0
ρ r dr within R′, modifying Keplerian rotational

velocity to

vrot(R
′) =

√

GMcum(R′)

R′
. (2.33)

Furthermore, we need to consider the pressure forces within the gas disc as well as the

disc geometry of the gas, which significantly alters the shape of the potential, and hence

vrot.

A more detailed prescription for the derivation of the pressure correction term can be

obtained from Stahler and Palla [2005]. In hydrostatic equilibrium, the pressure force in
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a HI disc balances the vector force per unit mass, ∇ΦG, due to the galactic gravitational

potential ΦG:

− 1

ρg
∇pg −∇ΦG = 0 (2.34)

where pg and ρg are the pressure and mass density, respectively, of the atomic gas.

Granted that γ = 1, these two quantities are related by

pg = ρgσ
2
g, (2.35)

with σ2
g being the internal random motion of the medium. The radial component of

equation (2.34) reads

1

Σg

∂p̃g
∂R

= −∂ΦG

∂R
. (2.36)

with pg reducing to p̃g = Σgσ
2
g. All other directions than the radial one, R̂, have

been discarded, thus projecting the volume density into the x− y plane. Based on the

assumption that the gas disc follows a radially exponential density distribution, as is

the case for the bulk of our presented models, p̃g can be rewritten as

p̃g(R) = Σg(R)σ2
g = Σg(0)e

−R/Reσ2
g. (2.37)

Assuming a constant σg, the derivative can then be calculated to

∂p̃g(R)

∂R
= −Σg(0)

Re

e−R/Reσ2
g. (2.38)

Additionally, equation (2.34) needs to be modified by a centrifugal term, in order to

have the gravitational force balance the pressure force as well as the centrifugal force.

With a Keplerian potential ΦG(R) = −GM/R,

v2rot
R

=
GM

R2
+

1

Σg

∂p̃g(R)

∂R
=

GM

R2
−

σ2
g

Re

, (2.39)

and therefore
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vrot =

√

GM

R
−

σ2
gR

Re

, (2.40)

which yields a general solution for a Keplerian potential corrected by pressure effects.

Note in the case of equation (2.39) that the potential ΦG can in fact be of any form,

and does not necessarily have to be Keplerian [for a thorough discussion, see Binney

and Tremaine, 1987].

To obtain the potential, Laplace’s equation needs to be solved in cylindrical coordinates.

Presuming axisymmetry of the system,

1

R

∂

∂R

(

R
∂Φ

∂R

)

+
∂2Φ

∂z2
= 0, (2.41)

where the disc is infinitely thin in approximation. This equation simplifies to a set of

two first-order differential equations by separating the variables:

Φ = J(R)Z(z) (2.42)

Thus,

1

J(R)R

d

dR

(

R
dJ

dR

)

= − 1

Z(z)

d2Z

dz2
= −k2 (2.43)

where k = const. This set is solved via

Z(z) = Z0e
−k|z|J(R) = J0(kR), (2.44)

where J0(kR) is the 0th-order cylindrical Bessel function and Z0 = const. The boundary

conditions are constrained by Φ → 0 for z → ∞ or R → ∞, as well as Φ(z = 0)

remaining finite. Therefore, with k chosen randomly,

Φk(R, z) = Z0e
−k|z|J0(kR) (2.45)

is the solution to the Laplace equation. Keep in mind here, that due to the presence

of a mass distribution of almost zero thickness, which is axisymmetric and spatially



26 Theory

finite, k may only assume certain values such that the surface mass density of the sheet

determines the potential difference between two points just above and just below the

sheet. The relation between the mass surface density and the potential difference can be

achieved via Gauss’ theorem. Integration of Poisson’s equation over a small box-shaped

volume surrounding the sheet, where ~d2S is the normal vector on its surface, yields

∫

~∇2Φkd
3x = 4πG

∫

ρd3x, (2.46)

and so

∫

~∇Φkd
2S = 4πG

∫

(ρdz) d2S. (2.47)

When integrating over all surface elements, any elements non-parallel to the sheet will

cancel out. Hence, equation (2.47) reduces to

(

∂Φ+

∂z
− ∂Φ−

∂z

)

d2S = 4πGΣkd
2S, (2.48)

where Σk =
∫

ρdz is the previously defined mass surface density. With

∂Φ±

∂z
= lim

z→0

∂Φk

∂z
= ∓kJ0(kR), (2.49)

whereupon z is converging to zero, we obtain the surface density for the solution

Φk(z, R),

Σk(R) = − k

2πG
J0(kR). (2.50)

Further, it is possible to find the potential for any arbitrary very thin mass distribution

by exploiting the linearity of Poisson’s equation in Φ and ρ. In this case, the general

solution reads

Σ(R) =

∞
∫

0

S(k)Σk(R)dk, (2.51)

so the potential calculates to
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Φ(R, z) =

∞
∫

0

S(k)Φk(R, z)dk. (2.52)

Assuming Σ(R) to be given, inserting equation (2.50) into (2.51) yields

Σ(R) = − 1

2πG

∞
∫

0

S(k)J0(kR)kdk. (2.53)

Inversely, since this integral equals a Hankel transformation:

S(k) = −2πG

∞
∫

0

J0(kR)Σ(R)RdR. (2.54)

The potential Φ and the rotational velocity v2rot = R ∂Φ
∂R

can now be fixed by applying our

postulated exponential profile Σ(R) = Σ0 · exp(−R/Re), involving the modified Bessel

functions I0, I1, K0, K1:

R
∂Φ

∂R
= v2rot(R) = 4π GΣ0 Rey

2(I0(y)K0(y)− I1(y)K1(y)) (2.55)

where y = 1
2

R
Re
.

The complete solution regarding pressure forces and the shape of the disc potential now

reads

vrot =

(

R
∂Φg

∂R
+R

∂Φ∗

∂R
+R

∂ΦDM

∂R
−

σ2
gR

Re

)1/2

, (2.56)

where the negative term is the pressure correction. Note here that the potentials for

DM and baryonic matter each have to be calculated separately. Thus,

vrot =

(

4π G(Σg(0) + Σ∗(0))Rey
2(I0(y)K0(y)− I1(y)K1(y)) +

GMDM,cum

R
−

σ2
gR

Re

)1/2

,

(2.57)
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while assuming spherical symmetry of the DM halo.

Larger values of gas particle random motion σg will generally lead to a faster decline of

vrot in the outer disc parts. For low values of σg, as is typical in present-day galaxies,

the pressure effect is negligible. However, in turbulent, gas-rich proto-galaxies at z > 2

the pressure gradient has to be taken into account.

2.1.4 Dark matter halo models

Various prescriptions for DM halo models have been proposed [e.g. Hernquist, 1990,

Flynn, Sommer-Larsen and Christensen, 1996, Navarro, Frenk and White, 1996]. In

hydrodynamic simulations, all of these can well be applied for a number of specific

problems. However, if the typical length scale of the problem is beyond the size of the

(baryonic) galaxy hosted by the DM halo, the results may vary significantly for different

DM halo models.

Halo model by Flynn, Sommer-Larsen and Christensen [1996]

One of the models, proposed by Flynn et al. [1996], is of major interest due to its

simplicity, but also because it is generally adapted to data known from the Milky Way.

It describes the potential of the dark halo by invoking a convergence value vH for the

rotational velocity at large radii r ≫ r0 comparative to the core radius r0. By assuming

spherical symmetry, the potential has the form

ΦFSC =
v2H
2

ln

(

(

r

kpc

)2

+

(

r0
kpc

)2
)

. (2.58)

Flynn et al. [1996] assume a convergence value for the rotational velocity vH = 220 km s−1

at large radii and a core radius r0 = 8.5 kpc in their model. As a result, the rotational

velocity is within a 10 per cent range of vH at radii larger than ∼ 25 kpc. If the dark halo

potential is further modified by both disc and bulge potentials, the change in rotational

velocity will be insignificant already at a mere 10 kpc.

We assume that the initial halo gas is in hydrostatic equilibrium, and isothermal, sug-

gesting a radially exponential gas distribution:

ρg(r, θ) = ρcrit,g exp

(

−Φtot(r, θ)
0.59MP

kB T

)

(2.59)
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where MP is the proton mass, and

Φtot(r, θ) = Φdisc(r, θ) + Φcent(r) + ΦH(r). (2.60)

where the dark halo potential will begin to dominate at larger radii. The other two

potential components are due to the disc and the central bulge, respectively, and will

be explained in Chapter 3. Note that the density in the inner parts of the halo remains

within reasonable bounds due to our simulation domain being cut off close to the centre.

Since the halo shall be isothermal, we can vary T thus that the density ρg at the inner

edge is no higher than typical disc density values, which are of order 10−24 g cm−3.

Knowing the resulting temperature Thalo, we can obtain the baryonic hot halo mass by

integrating the now well-defined baryonic density profile. With the halo density ρg given

for all radii, the halo pressure p can be obtained from the ideal gas equation

p = nbkBThalo, (2.61)

where nb = 2ρg/MP, due to ionisation. The initial equilibrium state for the halo will

only hold as long as the temperature is kept constant.

The task of constructing an isothermal halo in hydrostatic equilibrium is encumbered

by the condition that its density should converge against a certain background value as

described in 2.1.1. A halo potential of the form described by equation (2.58) given by

a constant rotational velocity vrot for large r entails the fact that the halo pressure will

not converge. This means first of all that shock fronts could theoretically proceed to

infinity as due to the resistant pressure decreasing strongly with r they will accelerate

forever. Furthermore, the density would have to drop adequately in order to maintain a

constant temperature all over the halo, and would soon reach unreasonable values below

the cosmic background (compare Figure 6.2). However, since our simulation boxes do

not stretch beyond 20 kpc, these issues may not necessarily be problematic, and the halo

model would qualify for simulations within a limited radial range.

Navarro-Frenk-White (NFW) halo

A more common cold dark matter halo model has been provided by Navarro et al. [1996].

They describe the equilibrium dark matter density profile by the well-known equation

ρ(r) = ρcrit
δ0

(

r
rs

)(

1 + r
rs

)2 , (2.62)
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where rs is a scale radius, δ0 is a characteristic overdensity, and ρcrit is the critical back-

ground density. They conclude in their work that the profile can be fitted to haloes of

any mass without free shape parameters, however, the profile is shallower than isother-

mal in the inner regions, and steeper than isothermal in the outer ones. Commonly,

the rotation curve resulting from this halo model is in good agreement to the observed

rotation curves of disc galaxies.

The NFW model for cold dark matter haloes has been used by Hayashi et al. [2007] to

derive the shape of its potential,

ΦNFW = − GM200

rs f(c200)

ln (1 + r/rs)

r/rs
, (2.63)

where the function f(u) = ln (1 + u) − u/(1 + u), and the concentration parameter

c200 = r200/rs calculates from the radius r200 of a sphere of mean density equal to

200 ρcrit. M200 is the total mass enclosed in this sphere.

We will address these two halo models more closely in the respective setup sections

in Chapter 4. Therein we will make use of concrete examples in order to set up the

respective simulations, and ultimately line out the most significant differences between

the two.

2.2 Fluid mechanics

2.2.1 Basic equations

Fluid and stellar systems often show similar behaviour, and furthermore, gas dynamics

are important to understand the formation and evolution of galaxies. For these reasons,

the basic principles of fluid mechanics, which are the theoretical foundation for our stud-

ies of galaxy dynamics, shall be briefly reviewed here. For a more detailed outline, see

Landau and Lifshitz [1959].

Characterising the state of a fluid requires knowledge of its density ρ(~x, t), its pressure

p(~x, t) and the velocity field ~v(~x, t). It may further be characterised by functions like

the temperature T (~x, t) and the entropy index S(~x, t); in the underlying work these
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two quantities will be of major importance at a later point. We assume a stationary,

closed volume V , with a bounary surface A. It shall contain a fluid of mass M(t) =
∫

V
ρ(~x, t)d3~x, which changes in time by dM/dt =

∫

V
(∂ρ/∂t)d3~x. A mass of ρ~v · d2 ~A will

cross the area element d2A per unit time, where d2 ~A is a surface-normal vector pointing

outwards, with magnitude d2A. Hence, dM/dt = −
∫

A
ρ~v · d2A, so

∫

V

∂ρ

∂t
d3~x+

∫

A

ρ~v · d2 ~A = 0. (2.64)

With the divergence theorem,

∫

V

[

∂ρ

∂t
+ ~∇ · (ρ~v)

]

d3~x = 0, (2.65)

and keeping in mind that this result is true for every volume, one can derive the con-

tinuity equation:

∂ρ

∂t
+ ~∇ · (ρ~v) = 0. (2.66)

In an inviscid fluid, the volume is exposed to a total pressure force of −
∫

A
p d2 ~A. If

some external force, like the one from a gravitational potential Φ(~v, t) applies, Newton’s

second law reads

M
d~v

dt
= −

∫

A

p d2 ~A−M~∇Φ. (2.67)

The latter must hold for every small volume V, and in accordance to the divergence

theorem
∫

A
p d2 ~A =

∫

V
~∇p d3~x,

ρ
d~v

dt
= −~∇p− ρ~∇Φ. (2.68)

Now, d~v/dt must be related to the velocity field ~v(~xt). For any given particle, the

velocity change d~v per time interval dt is the sum of the velocity change at a given point

in space, (∂~v/∂ t)dt, and the velocity difference between two points at a separation of

d~x = ~vdt at the same moment. With the latter change being (∂~v/∂ xi)dxi = (d~x · ~∇)~v,

d~v

dt
=

∂~v

∂ t
+
(

~v · ~∇
)

~v. (2.69)
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The combination of equations (2.68) and (2.69) leads to Euler’s equation:

∂~v

∂ t
+
(

~v · ~∇
)

~v = −1

ρ
~∇p− ~∇Φ. (2.70)

To determine the changes in energy within a given stationary volume, we write the

energy of the fluid per unit volume as

ρv2

2
+ ρeint, (2.71)

in which the first term is the kinetic energy, and the second is the internal energy, with

eint being the internal energy per unit mass. The change in energy follows from the

partial derivative,

∂

∂t

(

ρv2

2
+ ρeint

)

. (2.72)

For its calculation we write

∂

∂t

(

ρv2

2

)

=
v2

2

∂ρ

∂t
+ ρ~v

∂~v

∂t
, (2.73)

or, using the continuity equation (2.66) and a non-gravitational form of Euler’s equation

(2.70),

∂

∂t

(

ρv2

2

)

= −v2

2
∇ · (ρ~v)− ~v∇p− ρ~v(~v∇)~v. (2.74)

The expression ~v(~v∇)~v is substituted by (~v/2)∇v2. The pressure gradient can be sub-

stituted according to the thermodynamic relation dw = T ds+(1/ρ) dp by ρ∇w−ρT∇s,

thus obtaining

∂

∂t

(

ρv2

2

)

= −v2

2
∇ · (ρ~v)− ρ~v∇

(

v2

2
+ w

)

+ ρT~v∇s, (2.75)

where w is the specific enthalpy, and s the specific entropy. We now use the thermody-

namic relation

deint = T ds− p dV = T ds+
p

ρ2
dρ (2.76)
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to rewrite the derivative (∂/∂t) ρeint. Since the sum of eint + (p/ρ) = eint + pV is just

the specific enthalpy w, we find

d(ρeint) = eint dρ+ ρ deint = w dρ+ ρT ds, (2.77)

and hence

∂(ρeint)

∂t
= w

∂ρ

∂t
+ ρT

∂s

∂t
= −w∇ · (ρ~v)− ρT~v∇s. (2.78)

Hereby we have invoked the adiabatic equation (∂s/∂t)+~v∇s = 0. By collecting terms,

we obtain the change in energy,

∂

∂t

(

ρv2

2
+ ρeint

)

= −
(

v2

2
+ w

)

∇ · (ρ~v)− ρ~v∇
(

v2

2
+ w

)

, (2.79)

or, finally,

∂

∂t

(

ρv2

2
+ ρeint

)

= −∇ ·
(

ρ~v

(

v2

2
+ w

))

. (2.80)

By introducing the sum of specific internal and kinetic energies e = (v2/2) + eint as the

total specific energy and eliminating w, the equation of energy conservation can be

written as

∂ρe

∂t
+∇ · (ρe~v) +∇ · (p~v) = 0. (2.81)

Lastly, an equation of state is needed to bring pressure and density into relation, e.g.

p = p(ρ, s) or p = p(ρ, T ); these have to be combined with an auxiliary equation, which

determines s or T . For fluid systems, it is sufficient to apply the barotropic equation

of state, p = p (ρ), where the density uniquely determines the pressure. One may then

rewrite the specific enthalpy as

w (ρ) =

ρ
∫

0

dp

ρ
=

ρ
∫

0

dp (ρ)

dρ

dρ

ρ
, (2.82)

with which, in a barotropic fluid, Euler’s equation (2.70) simplifies to
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∂~v

∂ t
+
(

~v · ~∇
)

~v = −~∇ (w + Φ) . (2.83)

The models presented in this work however are based on the assumption of an ideal gas,

for which the pressure is determined by

pV = nkBT, (2.84)

where n is the number density of gas particles, and kB is the Boltzmann constant. It

may also be expressed using the adiabatic index γ by writing

p = (γ − 1)e, (2.85)

where e is the energy per unit mass, or specific energy.

The three vector components of Euler’s equation, the continuity equation (2.66) and

equation (2.81) constitute a complete description for the evolution of pressure p, density

ρ, and the three components of the velocity ~v.

2.2.2 Interstellar shocks

We shall now have a closer look at the physics regarding one of the key ingredients in our

later simulations. The different types of interstellar shocks and their origin as well as

the Rankine-Hugoniot jump condition have been summarised in more detail by Dopita

and Sutherland [2003]. Their descriptions also include magnetic fields, which we will

widely neglect here, as their incorporation is beyond the scope of this work.

The Rankine-Hugoniot jump condition

A complete description of non-gravitational steady flows can now be provided by the

continuity equation (2.66), Euler’s equation(2.70), the equation of energy conservation

(2.81), and further the magnetic energyflux conservation equation,

d

dx
(Bv) = 0. (2.86)

Their integration yields the relationship between any two regions of the flow. Note that

here we are dealing with continuous flows. The standard hydrodynamic equations imply
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continuous differentiability of a function. Any flow discontinuities (i.e. shocks) however

are non-continuous solutions. These can be found by transforming the equations into

the inertial system of the shock wave, so time derivatives will no longer be of relevance.

We consider one starting point in the flow, described by the variables v0, p0, ρ0, and

magnetic field B0, and further one later point in the flow with these variables changed

to v1, p1, ρ1, and B1, respectively. By eliminating the internal energy term from the

energy equation, using U = p/(γ − 1) as equation of state, the Rankine-Hugoniot

jump condition can be written in terms of the difference between the fluid variables

at points 0 and 1, respectively,

[ρ v]10 = 0,

[B v]10 = 0,

(2.87)
[

p+ ρ v2 +
B2

8π

]1

0

= 0,

[

ρ v3

2
+

γ

γ − 1
p v +

B2 v

4π
+ F

]1

0

= 0.

It is imperative for the flow discontinuity to be stationary in the frame of reference in

which the jump conditions are evaluated. These conditions can then be used to obtain

the flow variables and magnetic field at any other point in the flow, under the circum-

stances that the initial conditions are known and the energy loss term is calculable.

In the present work only flows without magnetic fields are investigated. We consider a

radiation-free change, where the flow variables change suddenly in the shock, and hence

[F ]10 = 0. The Rankine-Hugoniot jump conditions then simplify to

[ρ v]10 = 0,

[

p+ ρ v2
]1

0
= 0, (2.88)

[

v2

2
+

γ

γ − 1

p

ρ

]1

0

= 0.
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Radiationless shocks

The continuity condition guarantees that ρ1 = ρ0 v0/v1, and so the momentum condition

yields p1 = p0 + ρ0 v0(v0 − v1). Both can be substituted into the energy condition, and

terms collected, so

(

γ + 1

γ − 1

)

v21 −
(

2γ

γ − 1

)(

p0 + ρ0 v
2
0

ρ0 v0

)

v1 +

(

2γ

γ − 1

p0
ρ0

+ v20

)

= 0. (2.89)

Eliminating p0 and dividing by v20 leads to a dimensionless equation

(

γ + 1

γ − 1

)

β2 − 2

γ − 1

(

(

c0
v0

)2

+ γ

)

β +

(

2

γ − 1

(

c0
v0

)2

+ 1

)

= 0, (2.90)

with β = (v1/v0). Defining the Mach number M by the ratio of flow speed to sound

speed, equation (2.90) simplifies to

(

γ + 1

γ − 1

)

β2 − 2

γ − 1

(

M−2 + γ
)

β +

(

2M−2

γ − 1
+ 1

)

= 0. (2.91)

The M−2 terms become negligible for sufficiently fast flows. Hence, in a monatomic gas

with γ = 5/3, the solutions

v1 = v0 (2.92)

and

v1 =
v0
4

(2.93)

are possible. The first solution resembles the trivial case where nothing happens in the

flow. The second or strong shock solution bears the implication that the monatomic gas

cannot be compressed by a factor larger than 4 while passing through the shock. With

the initial gas pressure being negligible compared to the ram pressure, and v0 ≡ vs due

to the fact that the shock is stationary in the frame of reference, the full strong shock

solution to the postshock variables reads
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v1 =
vs
4
,

ρ1 = 4ρ0, (2.94)

p1 =
3ρ0 v

2
s

4
.

As energy is conserved, and kinetic flow energy is decreased by passing through the

shock, the thermal energy of the plasma increases correspondingly. Following the shock,

the internal energy of the gas is

ǫint =
3p1
2ρ1

=
9

32
v2s , (2.95)

which is just the same as the rest frame kinetic energy of the postshock gas. Writing

the equation of state as p/ρ = k T/µmH, we can calculate the postshock temperature

from (2.95):

T1 =
3µmH v2s

16k
. (2.96)

The highly increased temperature of the postshock plasma will lead to a comfortably

subsonic velocity of the postshock flow. Hence, its ram pressure becomes unimportant,

so the subsequent flow can be well approximated by isobaric cooling.

Isothermal shocks

Shock-heated gas will immediately begin to radiate and cool, requiring the use of the

complete Rankine-Hugoniot conditions to solve the subsequent flow parameters. A fully

cooled gas that has returned to its original temperature represents a useful limiting

case. This is given e.g. when cosmic-ray heating or photoionisation heating maintain

the initial and final temperatures. This case is called an isothermal shock ; the sound

speed c2s = p/ρ before and after the shock are the same, which can be used in place of

the energy conservation condition:



38 Theory

[ρ v]10 = 0,

[

p+ ρ v2
]1

0
= 0, (2.97)

[

p

ρ

]1

0

= 0.

With the equation of state in an isothermal plasma being p = ρ ·const, effectively, γ = 1

at points 0 and 1 in the pre- and postshock plasma. We can now solve (2.98) in terms

of the Mach number of the preshock flow, and obtain the quadratic equation

(

v1
vs

)2

−
(

M−2 + 1
)

(

v1
vs

)

+M−2 = 0. (2.98)

Its solutions read

v1 = vs,

(2.99)

v1 = M−2 vs,

whereas the first one is trivial and the second one is the shock solution, as in the

radiationless shock case. M2 is the maximum value for compression in an isothermal

shock, which becomes clear from the shock solution and using the equation of continuity.

In the absence of magnetic fields, the total shock luminosity calculates to

Ė =
ρ0 v

3
s

2

(

1−M−2
)

. (2.100)

This equation can be used to relate the total shock luminosity to other shock parameters

in astrophysical applications.



2.2 Fluid mechanics 39

2.2.3 The drivers of interstellar shocks

Supernova explosions

Upon their first interaction with the ISM of density ρ0, supernova ejecta drive a shock

at velocity vs, which is determined by the fastest moving ejecta with density ρ(R, t) and

velocity v(R, t). Interstellar material is swept into a a shell, slowing down the blast wave

shortly thereafter, which in turn causes a reverse shock to propagate through the freely

expanding ejecta. Thereby, kinetic energy is converted into thermal energy. The surface

separating the hot shocked ISM and the hot shocked ejecta is called contact discontinuity.

Eventually, the mass of the shocked ISM will exceed the ejecta mass by far, and all of

the ejecta will be shocked to high temperature, as the reverse shock has passed down to

the explosion centre. At that point, the Sedov-Taylor phase of the blast wave evolution

begins. At radius R, we can denote the specific thermal and kinetic energy behind the

strong adiabatic blast-wave shock in accordance to equation (2.95);

ǫint = ǫkin =
9

32
Ṙ2, (2.101)

with vs = dR/dt = Ṙ. Due to the blast wave speed decreasing with time, the specific

internal energy of the hot gas bubble undergoes a change with radius. This among other

changes vary in a self-similar way with respect to R however, and hence the total energy

E0 in the hot gas bubble, is

E0 = φ
4π

3
R3 ρ0 (ǫint + ǫkin) = φ

3π

4
ρ0 R

3 Ṙ2, (2.102)

where φ is a structure parameter of order unity, accounting for the distribution of specific

energy within the bubble. Neglecting radiative losses, E0 is equal to the energy injected

by the supernova. When t → 0, and so R → 0, this equation of motion for the bubble

is solved by

R =

(

25

3πφ

)1/5 (
E0

ρ0

)1/5

t2/5. (2.103)

Hence, the instantaneous blast wave velocity vs(t) during the Sedov-Taylor phase is
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vs =
2

5

(

25

3πφ

)1/5 (
E0

ρ0

)1/5

t−3/5. (2.104)

In fact, the size of a supernova remnant at a given time is only determined by the energy

of the explosion E0 and the density ρ0 of the surrounding medium. The equation can

be rewritten to express vs(r) as

vs =
4

5

(

2

15πφ

)1/2 (
E0

ρ0

)1/2

r−3/2. (2.105)

The end of the Sedov-Taylor phase is reached when the cooling timescale of the shocked

plasma becomes shorter than the dynamical expansion time, and thus radiative losses

become important. The p dV work from the expanding hot bubble interior on the

interstellar medium is subsequently radiated away, which changes the energy equation

to

Ė = −P · 4 π R2 Ṙ. (2.106)

The adiabatic equation of state yields

E =
4 π

3 (γ − 1)
R3 P, (2.107)

with E being the instantaneous energy content of the bubble. Combining with the

equations of mass and momentum conservation leads to

M =
4 π

3
R3 ρ0, (2.108)

and

d
(

M Ṙ
)

dt
= 4 π R2 P. (2.109)

With these equations the intermediate evolution of the shell can be solved; R ∝ t2/7.

The final or snow plow phase of evolution is reached when the remnant keeps expanding

only through the momentum of the dense shell, after the stored thermal energy has been
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entirely radiated away. The momentum stored within supernova ejecta at late times can

be ignored, leaving

M0 v0 =
4 π

3
R3 ρ0 Ṙ, (2.110)

as the equation of momentum conservation, where M0 is the ejecta mass thrown out in

the supernova explosion at a mean velocity v0. This equation can be solved by

R =

(

3M0 v0
π ρ0

)1/4

t1/4. (2.111)

Close to the end of this phase, the expansion velocity drops beneath the sonic speed of

the ISM, and the remaining energy of the supernova decays through turbulent cascade.

Stellar wind bubbles

Stellar atmospheres scatter radiation from the central star; a process by which the

momentum L⋆/c is transferred to the atmospheric gas, giving rise to an outflowing

wind. If the wind attains a terminal velocity vw and a mass flux rate Ṁw, then

Ṁw vw =
η L⋆

c
. (2.112)

The factor η accounts for multiple scattering of single photons, which increases the total

momentum that can be deposited. This process is limited by the amount of energy

produced by the star, so

1

2
Ṁw v2w < L⋆. (2.113)

It follows from (2.112) and (2.113) that η < 2c/vw. Assuming a typical η value of 3− 4,

and an outflow velocity a factor 1 . ǫ . 3 times the escape velocity at the base of the

outflow,

vw = ǫ

(

GM⋆

r⋆

)1/2

∼ 1000− 4000 km s−1. (2.114)

The wind is in free expansion first, but is eventually affected by the interaction with the

surrounding ISM of density ρ0, at which time it passes through an adiabatic shock at
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an inner radius Rin. This shock is comparable to the reverse shock in early supernovae;

it is thermalized and feeds into thick and hot gas masses, which actually provide the

piston to inflate the stellar wind bubble. With the sound-crossing time scale in the

hot plasma being much shorter than the dynamical bubble expansion time scale, the

pressure p between the inner shock and outer shock is approximately constant. The rate

of change in momentum per unit area of the stellar wind across the inner shock yields

the pressure in the hot plasma,

p =
3 Ṁw vw
16 π R2

in

. (2.115)

By the relatively low expansion velocity of the bubble it is guaranteed that the outer

shock is radiative and remains at a temperature of ∼ 10, 000K, the same as the preshock

gas, which is ionised by photons from the central star. The shocked interstellar gas can

hence be assumed to form a thin shell at the outer bubble radius. The respective

momentum conservation equation reads

d

dt

(

4 π

3
ρ0 R

3 Ṙ

)

= 4 π R2 p, (2.116)

or, equivalently,

p

ρ0
= Ṙ2 +

1

3
R̈ R. (2.117)

Assuming a constant fraction φ = 1 − (Rin/R)3 of the total volume to be occupied by

the hot gas, and the energy input Ėw = Ṁw v2w/2 by the stellar wind being equal to the

sum of the rate of change of thermal energy in the hot gas plus the rate of p dV work

performed on the interstellar gas, we obtain the energy conservation equation,

Ėw =
d

dt

(

3 p

2

4 π φ

3
R3

)

+ p
d

dt

(

4 π

3
R3

)

. (2.118)

Eliminating the variable of pressure from (2.117) and (2.118) leads to the equation of

motion for the shell. Under the assumption that its solution is a power law,

R = Θ tβ (2.119)
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having the correct boundary conditions, R → 0 as t → 0, one can conclude by substi-

tuting for R and its derivatives in t in the equation of motion, that β = 3/5. Hence,

Θ =

(

125

π (70φ+ 84)

)1/5
(

Ėw

ρ0

)1/5

, (2.120)

and finally,

R =

(

125

π (70φ+ 84)

)1/5
(

Ėw

ρ0

)1/5

t3/5. (2.121)
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Chapter 3

Methods

This section shall give a brief overview about the technical aspects of our studies. We

will describe the most important methods used therein and, if non-trivial, justify them

physically. This includes cooling restrictions, SN triggering and their feedback mecha-

nism.

3.1 Numerical hydrodynamics

In the previous chapter, we introduced a set of equations which suffices to describe

the most important quantities of a gas mass in a dynamic system. In theory, these

systems can be simulated by means of numerical codes that divide into two common

categories: Smoothed Particle Hydrodynamics (SPH) codes feature distinct particles

which represent a gas mass of certain spatial extent and density, and whose speed and

location are clearly specified. However, there are situations when this type of code

reaches the limits of its capabilities. One example has been the simulation of Kelvin-

Helmholtz instabilities, until an approach for a solution was provided by Junk et al.

[2010]. Hydrodynamic grid codes represent a viable alternative, which has been used

for this reason to conduct the simulations presented in this work. Grid codes divide the

simulation domain into distinct grid cells, each filled with a portion of gas at specified

density, pressure and temperature, and moving at a certain speed.

To describe the hydrodynamic processes mathematically, the code makes use of a set of

equations similar to the one presented in Section 2.3. As above, this includes a continuity

equation comparable to (2.66),

45
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∂ρ

∂ t
+

∂ρ uj

∂ xj

= 0, (3.1)

where uj and xj are the vector components of velocity and location, respectively. The

first term is to be seen as a change in mass per time in a given volume, while the second

accounts for inflowing and outflowing mass across the volume-bounding surface. Note

that this equation guarantees a conservation of the overall mass. Euler’s equation (2.70)

modifies to

∂ρ ui

∂ t
+

∂ρ ui uj

∂ xj

+
∂ p

∂ xi

= 0, (3.2)

as in our setup configuration, the potential component will be applied externally. The

first part of equation (3.2) physically represents a force, and taken by its own would

be e.g. a wave packet running through at constant momentum. The second part is

also called “advection term”. Advection terms generally describe quantities that are

carried along in the direction uj of movement, which in this case is the momentum.

The third term describes the total pressure onto the volume-bounding surface. In its

entirety, equation (3.2) conserves momentum. Lastly, to complete the set, we implement

an equation of energy conservation, which is essentially equation (2.81),

∂ρ e

∂ t
+

∂ρ e uj

∂ xj

+
∂ p uj

∂ xj

= 0, (3.3)

with e being the energy per unit mass. As in equation (3.2), the first term accounts

for changes in energy density per time. The second is an advection term describing

interactions between neighbouring cells due to their respective energies. The last term

represents processes of adiabatic expansion.

As can be seen from this set of equations, the basic idea of numerical simulations with

hydrodynamic grid codes is the conservation of the three quantities mass, momentum

and energy. It is worth noting here, that equation (3.3) specifically conserves internal

energy, whereas kinetic energy might in some cases undergo a slight decrease when

transferred from one cell to another. It is hence recommendable to adapt the geometry

of the grid to the shape of the problem that is to be investigated.
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3.2 The NIRVANA code

We perform 3D simulations with the magnetohydrodynamics code NIRVANA [Ziegler

and Yorke, 1997] on a spherical grid. We have parallelised the code making use of the

Message Passing Interface (MPI) library. Our simulations run for typically 48 hours on

6 SGI Altix processors. The gas evolution is calculated by solving the continuity, energy

and Euler equations. A constant background gravitational potential accounts for the

stellar and gaseous disc components, a bulge and the dark matter halo. The radiative

cooling function used here is the equilibrium cooling curve described by Sutherland and

Dopita [1993]. It accounts for the overall metallicity which is assumed to be equal to

the solar metallicity, and operates only within a temperature range between a lower

limit of 104 K and an upper limit of about 106 K, with the exact value depending on

the respective halo equilibrium temperature: For some of our models, the only effect

of the upper cutoff is to prevent cooling in freshly injected SN shells. This is required

to establish a more realistic SN remnant, before the shell cools and the remnant enters

the snow plow phase (see Section 3.4 for more details). We also use the upper cutoff to

entirely inhibit cooling of the halo in some simulations. We do this to account for the

unknown halo metallicity, which has a strong impact on radiative cooling. In this way,

we cover the limiting cases of strong and negligible cooling of the halo.

3.3 Simulations on the SGI ALTIX computer

The code has been slightly redesigned to run on an SGI ALTIX 3700 Bx2 machine.

Since the code is parallelised, we can make use of several of the 128 CPUs available on

ALTIX. However, NIRVANA parallelises the y- and z-dimension of the simulation box

by splitting them up into fragments of equal size; each fragment will then be processed

by one rank. In order to keep the results mathematically correct, each box fragment is

extended by two layers of “boundary cells” in the split-up dimension, which results in a

four-cell wide overlap region of any two adjacent CPU simulation domains. If periodic

boundary conditions are chosen, one single layer of boundary cells comprises three cells

instead of two. These boundary cells can be altered by their respective master rank

only, so it has to be ensured that during every time step the boundary data for other

ranks is updated, which is done via the MPI routines in the NIRVANA code.
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Table 3.1: Test runs for optimum computing time.

CPUs (y-dir.) 2 3 4 5 6 7 8 2 3 4

Cells (y-dir.) 100 99 100 100 96 98 96 100 99 100

CPUs (z-dir.) 1 1 1 1 1 1 1 2 2 2

Cells (z-dir.) 10 10 10 10 10 10 10 10 10 10

Run time (s) 274 194 160 127 108 98 93 162 119 88

Test runs

Higher number of CPUs however require more time-intense MPI routine calls per time

step, which will mitigate the gain from parallelisation at some point. In order to find

the optimum CPU number, we have performed several test runs displayed in Table 3.1.

Each of these runs is done in a 600 × y × z simulation box, and comprises 100 time

steps. The exact number of cells in y- and z-direction must be an integer multiple of

the processor number, where y ≈ 100 and z = 10.

As can be seen, parallelising the z-direction complicates matters in terms of MPI pro-

gramming at minimal gain. The computing time for 2× 2 and 2× 3 processors is even

higher than for 1 × 4 and 1 × 6, respectively. For more than 6 processors the time de-

crease diminuishes clearly, as every additional CPU increases the number of boundary

cells by four, and the higher number of MPI routine calls becomes noticeable. We thus

carried out the following simulations mostly with a number of six CPUs, parallelizing

only in y-direction. With the chosen number of ranks, our simulations run for typically

48 hours.

3.4 Stellar feedback

Star formation is triggered randomly for each single cell as soon as certain criteria are

met, and SNe occur immediately in an amount related to the mass of stars produced.

In the progress of this work, two approaches have been made to implement realistic

star formation rates to our models. The first approach is based on the Jeans criterion

which has been outlined in Chapter 2, and the SN probability for one cell is solely

bound to local criteria regarding this cell. The second approach implies the validity of

a Kennicutt-Schmidt star formation law for our model galaxy, where global and local
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key parameters are used to determine the supernova probability. Independently of the

approach, SNe appear instantly in certain amounts at one time in one cell, henceforth

referred to as a “SN event”, as the resolution of single SN is not feasible in this context.

3.4.1 Locally triggered star formation

Principally all star formation criteria in this approach are, directly or indirectly, de-

pendent on each cell’s volume density ρcell. Firstly, cells of density ρcell < 10−24g/cm3

are discarded as being generally too rarefied to allow for star formation to set in at all.

This value is empirically determined, and was found to yield a globally reasonable star

formation rate for our system, if applied. Secondly, the cell mass mcell is required to be

higher than the Jeans mass

mjeans =
π

6
ρcell

(

π
γ pcell
100 ρcell

1

Gρcell

)3/2

, (3.4)

where γ = 5/3, and pcell = 2/3 ecell the cell’s internal pressure. In most cases, if the first

criterion is not fulfilled, the second will be neither. Thirdly, as we infer the number of

SNe from the ejected cell mass mex ≃ mcell, the velocity of the SN shock front can be

fixed by spreading the ejected mass equally on the neighbour cells and providing the

surroundings with a velocity corresponding to the kinetic energy released by the SNe.

As bubbles resulting from less than about ten SNe will be of no significant effect, vex
shall be required to exceed 30 km s−1.

Whenever a cell qualifies for star formation by all three criteria, part of the cell mass

will be permanently locked in low-mass stars, while SN progenitor stars are assumed to

be instantly converted into SNe. Generally, for every 100 solar masses of gas converted

into stars, one canonical SN, each releasing an energy yield of 1051 erg, will occur. The

probability for a SN event, PSN,loc will be calculated, and in every time step SN events

will trigger randomly. Knowing the cell density ρcell, its volume Vcell, and the length of

the respective time step δt, the probability function reads

PSN,loc =
ρcell Vcell

100M⊙

· ǫSF · δt

tdyn
. (3.5)

The overall star formation efficiency ǫSF shall have 0.3 as a default value. The dynamical

time scale
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tdyn =

(

(dx)2 + (dy)2 + (dz)2

γ (γ−1) ecell
ρcell

)1/2

, (3.6)

with γ = 5/3, ecell being the cell’s internal energy, and dx, dy, and dz being the cell

dimensions, represents the time which is required for the gas to produce stars. The mass

of the cell, ρcell Vcell will determine the event size. A negligible amount of the former

remains within the cell after the event, whereas almost the entire cell mass is converted

into stars, which themselves will return seven per 100 solar masses of gas through stellar

winds and 18 per 100 solar masses by SN ejection. Hence, ∼ 25 per cent of the cell mass

will be ejected and evenly distributed to the neighbour cells, while ∼ 75 per cent are

locked into stars and SN remnants (see Section 3.5 below for details).

3.4.2 Star formation by the Kennicutt-Schmidt law

Star formation criteria include a local surface density exceeding the critical value Σcrit =

10M⊙ pc−2 required for star formation to set in [Kennicutt, 1998]. Before calculating

the local surface density, a volume density criterion applies for each cell to ensure that it

is part of a region dense enough to produce stars, which is, in particular, the disc. Cells

having a density less than 2× 10−24g cm−3 are considered to be either halo cells or too

rarefied for star formation to set in. In a few special cases, large high-density gas regions

can be found far away from the disc. We are to assume then that our model galaxy is

essentially breaking up as a consequence of too strong feedback. In consequence, once

the disc has lost integrity, the Kennicutt-Schmidt law might no longer apply. To avoid

perturbations from this effect, the column from which the surface density is calculated,

comprising only the aforementioned disc cells, shall be no higher than one fourth of the

total θ-range of the simulation domain, or 0.21π. This value chosen here, however, is

not a critical parameter. Finally, in order to allow the system some relaxation after

setup, SNe shall not occur before 1Myr.

Just like in the local model, we regard only SNe type II, since star forming galaxies are

observationally dominated by this type. Given the Salpeter IMF for the stellar mass

distribution, we can easily calculate that of 100M⊙ of gas locked up in stars, one type II

SN progenitor exists, with the latter typically being as massive as 19.8M⊙ on average,

considering stars within a range from 8 to 120 M⊙.

We assume that stars in all our model galaxies form in accordance to a local Kennicutt-
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Schmidt law [Kennicutt, 1998], given by

ΣSFR = 2.5 · 10−4

(

Σgas

M⊙ pc−2

)1.4

M⊙ kpc−2 yr−1, (3.7)

where Σ denotes the respective surface densities for star formation and gas mass. The

gas surface density Σgas is calculated for every time step δt and every grid point within

the r-φ-plane by integration of all disc cell masses along θ and dividing by the surface

area δr · r δφ of the respective column. Integrating along θ instead of the normal in

respect to the disc midplane is a sufficient approximation since the disc extends only

across a small angle δθ. Moreover, constraining star formation by limiting the maximum

column height to one fourth of the θ-range of the simulation domain will ensure that

the angle of integration is sufficiently small.

The SNe in simulations featuring star formation by the Kennicutt-Schmidt law come in

events of order 20 to 200 SNe at one time. Thus we can calculate a probability value

for every disc cell and each time step, giving the likelihood for a SN event comprising

ζ0 SNe,

PSN =
ΣSFR δr · r δφ δt
100M⊙ ζ0 nr,φ

, (3.8)

with nr,φ being the number of disc cells in the respective range of integration along θ. ζ0,

referred to as the “event size” herein, is a preset parameter which will be kept constant

during each single simulation. A random number is then drawn for each disc cell at

every time step. The occurrance of a SN event is then triggered according to the local

probability. Note that any altering of the resolution has to come with an appropriate

change in the event size range; too high event sizes will require a manifold of the gas

mass available in the cell, too small event sizes may produce unresolved bubbles.

3.5 Blast wave implementation

In this section we provide details of our blast wave implementation and follow the evo-

lution of a single superbubble in a test simulation. If a SN event is determined for a

specific cell, the following modifications in mass and energy will immediately take place:

An amount of 100 ζ0 M⊙ is regarded to be no longer available in gaseous form since

it is bound in stars, and henceforth removed from the cell. This amount can, in case

of large ζ0’s, exceed the cell mass, however, within our range of event sizes the total

mass deficit due to this error is below a five per cent threshold for the entire disc, and

hence considered negligible as it will insignificantly alter the disc dynamics. 25 per cent
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Figure 3.1: Mass density 0.1 Myr (left) and 2.0 Myr (right) after energy release.

of the newly formed stellar mass is returned to the gas phase due to stellar winds and

SN ejecta. So, essentially, our code removes 75 ζ0 M⊙ of gas from the SN-triggering cell.

The remaining mass is distributed equally among the six neighbouring cells except for

a small remainder of 10−28 g cm−3 within the central cell, so that the density increase is

the same in all six adjacent cells. As mentioned before, we assume an energy injection

of 1051 erg per SN, which will be implemented in accordance to a superbubble model

assuming instantaneous energy injection and constant ambient density: 60 per cent of

this energy is released as internal energy, fed into the SN cell and thus building up an

overpressure with respect to the surroundings. The remaining 40 per cent of the energy

total is kinetic energy, added as an extra velocity component to the neighbour cells.

This velocity of the SN ejecta, vex, is typically greater than 10 km s−1 upon release, and

therefore supersonic with respect to the sound speed inside the dense disc material, in

agreement to SN superbubble observations.

To check the behaviour of our blast wave implementation, we have modelled a box of 353

cells on a spherical grid section of 5 kpc < r < 6 kpc, and 0.07π in each θ and φ direction.

There is neither an external potential, nor does any other force (e.g. centrifugal) apply.

The overall density is set to ρ = 10−24g cm−3, and the temperature to 104 K which is a

common value for disk material in the models presented below. An energy equivalent

of 100 SNe, or 1053 erg, is released at t = 0 right in the centre of the box as described

above, forming an over-pressured, expanding hot gas bubble within a few 10,000 years

(Figure 3.1). There is no cooling taking place in this test run. We follow the bubble
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Figure 3.2: SN blast wave expansion of a 1053 erg event in a homogeneous

10−24 g cm−3 medium. As expected, the blast wave expands in good agreement

to a r ∼ t0.4 law (dotted line).
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expansion over 2Myr, tracing the distance between the shock front and the centre of

explosion (Figure 3.2) as well as the energy decrease with time. The shock front in the

underlying model is found to expand with a r(t) ∼ t0.4 law, as expected. Note however,

that this is the expansion behaviour as expected from a bubble produced by one single

SN. Superbubbles powered by many SNe spread out in time should rather expand with

r(t) ∼ t0.6 [Oey, 2009]. This is because all of our bubble-producing SNe are triggered in

one cell within one time step, as resolution prevents us from spreading SNe reasonably

in space and time, in order to produce more realistic superbubbles. We estimate that

this effect increases our bubble sizes artificially by about 25 per cent despite the smaller

expansion rate, as we start out with a much higher energy. On the other hand, we

find that about 10 per cent of the initially released energy are lost on the grid by

numerical effects within the first 100,000 years, however, any further loss thereafter is

comparatively small. Because the advection step of our code conserves only the thermal

and not the kinetic energy exactly, preferably the kinetic energy component will be lost

on the grid. Hence, the percentage of thermal and kinetic amounts will shift from an

initial 60−40 to a ratio close to 72−28 in the long term. Figure 3.1 shows two snapshots

of the SN bubble evolution, respectively 0.1 and 2 Myr after the event was triggered;

the inner, rarefied region carries the internal energy which is steadily converted into

kinetic energy as the over-pressured bubble expands. The kinetic energy resides within

the compressed high-density region surrounding the bubble. Its slightly asymmetric

form and initial imbalances in the kinetic/thermal energy distribution are a result of

the coarse implementation. Figure 3.3 shows observations of four bubbles produced by

single stars for comparison. Each of the bubbles has a more or less pronounced shell of

compressed gas and a hot rarefied interior, and is about 10 pc in radius.

3.6 Boundary and initial conditions

We run our simulations on a 3D spherical grid. The values denoted here represent

our typical simulation domain, which will be mostly used in the following chapters.

Exceptions from this pattern will be denoted in the specific setup sections in Chapter 4.

The simulation box is defined by a radial dimension r extending from 0.4 to 10.2 kpc,

a polar angle θ covering a section between 0.04π and 0.96π, and an azimuth angle φ

covering only a narrow “wedge” of the disc within −0.04π and 0.04π in range. Note

that the space close to θ = 0 and θ = π as well as the one at r < 0.4pc must be

omitted, as due to the spherical geometry grid cells within this space would become

increasingly narrow. This in turn would lower their crossing timescales significantly,
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Figure 3.3: Various SN remnants in false colours. Top left: G292.0+1.8; top right:

SN1006; bottom left: SNR0509-67.5; bottom right: Tycho’s SN. Each bubble has

a dimension of ≈ 20 pc across. Source: Chandra homepage.
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requiring high computing times for the innermost zones. The simulation of just a small

azimuthal sector of the disc instead of the whole φ-range is justified by assuming large-

scale rotational symmetry and has been invoked to save additional computing time. For

the main runs, the simulation domain is divided into 300 × 96 × 10 grid cells in r-,

θ- and φ-directions, respectively. Thus, a region near the disc midplane at r = 1kpc

is spatially resolved to ∼ 33 pc. Our choice made here concerning the resolution will

be explained in more detail at the end of this section. We choose reflective boundary

conditions for the lower r boundary and the upper and lower θ boundaries each, whereas

on the outer boundary in r-direction inflow and outflow of material shall be permitted.

The boundary conditions to the boundaries in azimuthal direction (φ) are chosen to be

periodical.

The total set of simulations performed in the frame of this work with their respective

potential configurations and star formation prescriptions are listed in Table 9.1 in the

Appendix. Further adjustments and the exact choice of parameters can be looked up in

Chapter 4, and in Tables 5.1 and 6.1 in Chapters 5 and 6, respectively.

3.7 Basic setup

Halo

We assume that the initial halo is in hydrostatic equilibrium, and isothermal, suggesting

a radially exponential distribution of baryonic matter (see equation (2.59)):

ρb(r, θ) = ρcrit,b exp

(

−Φtot(r, θ)
0.59MP

kB T

)

(3.9)

where MP is the proton mass, and

Φtot(r, θ) = Φdisc(r, θ) + Φcent(r) + ΦH(r), (3.10)

with ΦH being either a dark halo potential according to Flynn et al. [1996] or a NFW

profile dominating at larger radii. The other two potential components are due to the

disc and the central bulge, respectively, and will be explained below. Note that the

density in the inner parts of the halo remains within reasonable bounds due to our

simulation domain being cut off a few 100 pc away from the centre. Since the halo shall

be isothermal, we can vary T thus that the density ρb at the inner edge is not higher

than typical disc density values, which are at least of order 10−24 g cm−3. With the halo
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density ρb given for all radii, the halo pressure p can be obtained from the ideal gas

equation (2.61),

p = nbkBT, (3.11)

where nb = 2ρb/MP, due to ionisation. The initial equilibrium state for the halo will

only hold as long as the temperature is kept constant. Yet since in some of our runs

radiative cooling is permitted for the model halo, the subsequent temperature decrease

will provide a slight contraction of the halo with time. This in some sense accommodates

for the fact that galaxies at the given redshift are still accreting halo material in signif-

icant amounts. However, the interaction between (filamentary) infall of material into

a galactic disc and the onsetting wind is beyond the scope of this work and is studied

thoroughly by Powell et al. [2011].

Disc

Several approaches to establish a stable disc-halo system are tested in this work. A

detailed description for a possible setup can be found in Cooper et al. [2008]. In general,

the following issues have to be kept in mind: Firstly, we want the gaseous disc to be

rotationally supported (i.e. in hydrodynamic equilibrium), whereas the halo shall be

pressure-supported (i.e. in hydrostatic equilibrium), which inevitably causes friction

and shear effects in the transition zone. In addition, the halo cannot be truly set up in a

pressure equilibrium with the disc, as the halo isobars are geometrically not parallel to

those of the disc, which inevitably causes some motion in the halo. Therefore, we allow

the system to relax for one Myr. The resulting setup is then sufficiently close to an

equilibrium configuration to allow for the development of relatively stationary outflow

solutions (compare below). As mentioned above in equation (3.9), the total potential

is built up of three components, whereas the disc component Φdisc(r, θ) is a combined

form of a Miyamoto-Nagai potential [Miyamoto and Nagai, 1975]:

Φdisc = − GMD1
√

R2 +
(

a1 +
√
z2 + b2

)2

− GMD2
√

R2 +
(

a2 +
√
z2 + b2

)2

− GMD3
√

R2 +
(

a3 +
√
z2 + b2

)2
. (3.12)
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The bulge component Φcent(r) is basically a central potential,

Φcent = − GMC1
√

r2 + r2C1

− GMC2
√

r2 + r2C2

. (3.13)

These two components are further described in Flynn et al. [1996], which we will use

as the basic prescription for our disc setup. In the setup configurations of Chapter 5

and 6 the mass-related parameters therein (MD1
, MD2

, MD3
, MC1

and MC2
) are scaled

down to match the residual disc mass, which we assume to have settled into the disc.

The length-related sizes (a1, a2, a3, b, rC1
and rC2

) are also scaled down in these setups,

effectively shrinking the scale radius of our disc.

We have followed the evolution of the disc in several test models, finding the gas density

distribution of the disc ρd(r) to be insensitive to inward and outward flow movements

for a wide range of variations, as long as the pressure gradient and rotational velocity

of the disc material account for the hydrodynamic equilibrium. We use a density profile

exponential in radius for most simulations, with a specified cutoff radius, which is verti-

cally non-stratified. This latter fact is unproblematic since the disc will be given enough

time for relaxation, so stratification will develop in the early course of the respective

models (∼ 1Myr). The disc density thus reads

ρdisc(r, z) = ρdisc(r) = ρdisc,0 exp

(

− r

rs,D

)

, (3.14)

with ρdisc,0 being the gas density in the disc centre, and rs,D the scale radius.

As an alternative to the exponential distribution, one could use a constant gas density

profile, which has been observed e.g. by Bendo et al. [2010] for NGC 2403; this is to

be examined more closely in Section 5.4. Our gaseous disc will be non-stratified in

z-direction initially, but will relax into a stratified state within the first Myr of the sim-

ulation. The disc gas pressure follows from the ideal gas equation (2.61), just as for the

halo gas pressure. The gravitational force will be accounted for by the implementation

of Φtot(r, θ) as an external potential.
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Galactic winds with a logarithmic

halo density profile

The models presented in this chapter mainly have been used as test models to ensure

the overall stability of the disc-halo system and the correct setup of the supernova

implementation routine. Nevertheless, we can already obtain some valuable intermediate

results from these models, which will allow us later to refine the current setup step by

step.

Our first set of simulations is carried out on a spherical grid 600× 100× 6 cells in size.

The dimensions of the grid, however, initially differ from those mentioned in Section

3.6: the radial dimension r extends from 1 kpc to 20 kpc, the polar angle θ from 0.1π

to 0.9π and the azimuthal angle φ from −1/6π to 1/6π, or one sixth of a full disc. We

use the local star formation recipe as explained in Subsection 3.4.1, with the blast wave

implementation from Section 3.5.

4.1 Preconsiderations

4.1.1 Multiphase interstellar medium

As detailed in Section 3 above, we allow radiative cooling only in between a certain

range of temperatures. Below the lower temperature threshold for the cooling function,

background radiation is assumed to keep the disc temperature stable at an overall value

close to 104 K. The upper temperature threshold is a necessary tool in order to establish a

resolved multiphase ISM. In reality, the ISM exhibits a filamentary structure, comprising

59
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cold (T < 200K), dense filaments of molecular gas capable of producing stars, but only

having a small volume filling factor of about 5 per cent [de Avillez and Breitschwerdt,

2004]. The rest consists mainly of hot, rarefied gas with long cooling time, filling the

large spaces in between the filaments. SN bubbles forming in this multiphase medium

can expand to large radii, since the cooling process of their shock fronts, which would

otherwise provide an efficient energy drain, cannot effectively take place within the hot,

thin gas phase. In our numerical model we face a certain discrepancy in resolution:

On the one hand, we are interested in a large-scale phenomenon (some kpc), inevitably

meaning that the simulated domain, and therefore cell size has to be sufficiently large,

on the other, a resolution of the multiphase gas disc structure would be desirable, calling

for a cell size of order a parsec in order to resolve the cold, dense filaments, as is used

by de Avillez and Breitschwerdt [2005]. This is in particular important for shock fronts:

The existence of a volume-filling low density component means that some part of the

bubble expansion happens adiabatically. All these issues enforce a compromise on our

simulations to combine the key attributes of both phases; i.e. providing the cells of a

few dozen pc in length with the average gas density of the ISM, but still not allowing

the cooling rate to be too efficient, which would be the case in rarefied, warm ISM

regions represented by average-density cells. Note that with a standard cooling rate, a

shock front within our isotropic disc can cool down to the environment value within even

less than a time step, removing large quantities of energy from the SN bubble interior.

A feasible solution is here to forbid cooling completely above a threshold temperature

higher than the initial halo temperature but lower than the temperatures typically found

in the SN bubble shock fronts. This procedure allows the bubbles to acquire a diameter

well above the resolution limit before shell cooling sets in.

4.1.2 Global kinetic energy

Among other effects, a galactic wind could be launched by the sheer amount of kinetic

energy which accumulates within a gas-rich galactic disc over time. Let us therefore

consider a galactic gas disc with a mass of the order 1010 M⊙, as commonly found for

Lyman-break systems. Let us further assume the SFR to be around 10M⊙/yr, which

means in turn that we are going to encounter about one SN every 10 years. Normalised

to the entire mass of the system this would mean a SN rate 10 times as high as in the

Milky Way, which too has a gas mass of order 1010 M⊙ (the larger part of its mass is

locked in stars) at a SFR of 1M⊙/yr. Our model system may therefore be regarded to

be in a starburst phase. SNe are known to give rise to considerable turbulent motions
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within a disc [Dib, Bell and Burkert, 2006], each yielding a contribution of ∼ 1051 erg

at a presumed efficiency ǫ = 0.1 to the overall kinetic energy stored within the gas

phase of its host galaxy. Unlike internal energy, kinetic energy has the advantage that

substantial fractions will not be radiated away immediately, but rather dissipate on

the dynamical timescale [Mac Low et al., 1998, Burkert, 2006]. Allowing the turbulent

energy to pile up for ∼ 100Myr would result in an energy reservoir of order 1057 erg for

the disc as a whole. Since the gravitational binding energy is known to be of the same

order for a 1010 M⊙ system of 5 kpc radial extent, material ejections from the disc into

its surrounding galactic halo indeed becomes plausible at a certain point in time. The

approach of launching a turbulence-driven outflow has been investigated by Scannapieco

and Brüggen [2010]. In their models SN feedback was simulated by injecting unresolved

kinetic energy, which is described by an isotropic pressure term in the Euler equation.

Here, we also investigate kinetic energy driving, studying models where we inject only

kinetic energy, instead of a combination of thermal and kinetic energy (compare below).

We will however resolve the kinetic energy.

4.1.3 Resolution

Since the main focus of this work lies on galactic outflows, which constitute a large-

scale phenomenon, it is unnecessary to resolve the disc at high resolution levels. The

resolution of single SNe would require a cell size around one pc [Powell et al., 2011],

which would lead to unreasonably high computing times in our case. As our SNe are

clustered in superbubbles of several SNe, we can tackle this problem by allowing larger

typical cell sizes for our model, resulting in common bubble sizes of several hundred.

For the first series of simulations presented in this chapter, the typical disc cell at 1 kpc

radius is resolved at 33 pc.

4.2 Setup and initial conditions

4.2.1 Halo setup

The overall external potential is described by equation (3.10), where ΦH = ΦFSC is

given by equation (2.58), with r0 = 8.5 kpc. For large radii, the rotational velocity

will converge against a value of 220 km s−1. Equation (2.59) describes the setup of the

baryonic density distribution in the halo,
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ρb(r, θ) = ρ0 exp

(

−Φtot(r, θ)
0.59MP

kB T

)

, (4.1)

where ρ0 has a value of 1.67 × 10−28 g cm−3, or 10−4 gas particles per cm3. The initial

temperature of the halo gas is at 2×106 K, which leads to a long cooling time. Note that

for the simulations in this chapter there is no upper temperature threshold for cooling,

however, the halo density is of order 10−29 − 10−30 g cm−1, which, in combination with

the high temperature leads to a very long cooling time, so cooling is effectively negligible.

The halo pressure results immediately from its density via the ideal gas equation,

p = nbkBT. (4.2)

Rotation does not occur in the halo, however, there will inevitably be some shearing at

the contact surface between halo and disc.

4.2.2 Disc setup

Since the model by Flynn et al. [1996] is based on milky-way data, we will first examine

the evolution of galactic outflows for a milky way like system, and thus use the disc pa-

rameters described in their work to obtain the disc potential (compare equation (3.12)).

Table 4.1 gives an overview over the respective parameters. This potential accounts for

both stellar and gaseous disc components.

Further, the disc has an exponential gas density profile, reading

ΣD = ΣD,0 exp

(

− r

rs,D

)

, (4.3)

where ΣD,0 is the gas density at zero radius, and has a value of 7.8× 103 M⊙ pc−2, and

rs,D = 3kpc is the disc scale radius. There is no stratification in z-direction, however;

instead, the system will relax into equilibrium during the first Myr of the simulation.

The initial vertical extent of the disc will be 0.75 kpc both above and below the disc

midplane, thus resulting in a central gas volume density ρD,0 = 3.5× 10−22 g cm−3. We

assume the gas disc to be constantly kept at a temperature of 104 K due to background

radiation, which is realised in the simulations by switching off radiative cooling beneath

this value. Again, with the temperature and volume density known, we can obtain the

gas pressure inside the disc through the ideal gas equation (see above). Our disc is

cut off at an outer radius of 10 kpc. The gas mass in the disc can then be fixed to
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Table 4.1: External potential parameters for sim-

ulation set 1 (F-ST and F-KE).

Component Parameter Value

Dark Matter Halo r0 8.5 kpc

vH 220 km s−1

Bulge rC1
2.7 kpc

MC1
3.0× 109 M⊙

rC2
0.42 kpc

MC2
1.6× 1010 M⊙

Disc b 0.3 kpc

a1 5.81 kpc

MD1
6.6× 1010 M⊙

a2 17.43 kpc

MD2
−2.9× 1010 M⊙

a3 34.86 kpc

MD3
3.3× 109 M⊙
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3.71 × 1011 M⊙, which is little over 60 per cent of the total baryonic disc mass. The

setup thus resembles a gas-rich analogue of the Milky Way.

4.3 Test models

We have performed two simulations including the logarithmic halo density profile de-

scribed by Flynn et al. [1996]. The first model named “F-ST” injects SN energy in

form of a thermal and a kinetic component, whereas the second model “F-KE” omits

the thermal component, and injects only the kinetic part. These, and all simulations

following in later chapters, are tabulated in the Appendix.

4.3.1 Thermal and kinetic energy injection

As mentioned above, the mass of a given cell determines the likelihood of a SN event on

the one hand, and the size of the event on the other. Typical disc cells have a density of

up to several 10−21 g cm−3, implying a mass of several million M⊙. At a star formation

efficiency of ǫSF = 0.03 and one SN per 100M⊙, typical event sizes will be in the range

around 1000 SNe each. In our first model (F-ST) an event is represented by a super-

bubble which has already reached its Sedov expansion phase, where the inner hot and

rarefied gas region with its enormous pressure accounts for the accelerated expansion of

the overlying compressed and shock-heated layer of gas. We inject 60 per cent of the

total SN energy released (1051 erg per SN) as thermal, and the remaining 40 per cent as

kinetic energy.

Figure (4.1) shows three different snapshots of the gas mass density at 30, 70 and 250

Myr, respectively. We can already discern the emergence of an outflow-like structure,

with a superbubble escaping from the disc on its upper side at 30 Myr. This outgoing

bubble sweeps a path of rarefied material through the denser halo, entraining high-

density disc material on its outer limb. The path forms a conical structure until 70

Myr, where we also find another bubble attempting to escape the disc on its lower side.

However, the outflow is not continuous as most bubbles are forced back into the disc

by thermal halo pressure. The outflow ceases completely until 250 Myr, yet still seems

capable of opposing the ambient halo pressure. Since the halo density is very low with

an order of magnitude in between 10−29 and 10−30 g cm−3, the high temperature implies

a long cooling time; halo ram pressure due to cooling flow movements is therefore too
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Figure 4.1: Simulation F-ST with each SN releasing 4.0 × 1050 erg as kinetic, and

6.0× 1050 erg as thermal energy. The elapsed time is denoted above each snapshot.

Shown is the logarithm of mass density in meridional midplanes.



66 Galactic winds with a logarithmic halo density profile

small to suppress outflows effectively. It is also worth noting that the bubbles escaping,

and in one case provoking an outflow, emerge very close to the disc centre.

One might argue that the halo potential, which accounts for a continuously decreasing

density with radius, should be a supporting factor for galactic outflows. Since the halo

is isothermal, its pressure also decreases with radius, thus presenting ever less resistance

to an outgoing shock front. This however requires that a superbubble leaves the disc

at all in the first place, at which point the disc mass constitutes a limiting factor. Due

to the high density and hence pressure within the disc, even a presumably strong event

may prove too weak to build up enough bubble pressure to finally break free from the

disc. This becomes clear by the fact that until 70 Myr only two bubbles leave the disc,

ultimately resulting in an asymmetric appearance.

We will now gradually refine the methods used and vary certain parameters in order to

reproduce continuous outflows and reliably describe their actual triggers.

4.3.2 Kinetic energy injection only

For the last model one key method was the implementation of a Sedov-Taylor blast

wave model. However, it has also been proposed that turbulence from SN feedback may

give rise to a galactic outflow [Scannapieco and Brüggen, 2010]. We examine this more

closely in our second model (F-KE), where we inject only 40 per cent of the 1051 erg

per SN as kinetic energy, omitting the other 60 per cent. Apart from this, no further

changes from model F-ST were implied on the setup.

The snapshots in Figure 4.2 show the gas density at 20, 250 and 600 Myr, respectively.

Kinetic energy feedback quickly builds up a high amount of turbulence in the disc, and

changes its overall density profile into a more clumpy structure. This can be seen clearly

in Figure 4.3 (left box), showing the mass density against radius in the inner regions of

the disc. The density graph represents a cut through the disc midplane. The difference

between peaks and dips can extend well over one order of magnitude, whereas the dense

clumps are separated by several 100 pc at least, and about one kpc at most. The overall

turbulent energy stored within the disc is visualised in the right box of Figure 4.3; the

mass-averaged random motion speed is plotted against time. It can be seen that the

turbulent motion quickly stabilises in a timespan between 20 and 250 Myr, persisting

at a level of 40 km s−1, but showing some increase towards 250 Myr. Eventually, the in-

creasing storage of kinetic energy inside the disc will no longer be sustainable, at which

point the disc will lose integrity and be torn apart. The last snapshot in Figure 4.2
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Figure 4.2: Simulation F-KE with each SN releasing 4.0×1050 erg as kinetic energy

only. The elapsed time is denoted above each snapshot. Shown is the logarithm

of mass density in meridional midplanes.
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Figure 4.3: Left: Density plotted in the equatorial midplane against radius in a

range of 1 kpc < r < 6 kpc. Right: Mass-averaged random motion speed of disc

material against time.

shows the disc just prior to its ultimate dissolution; the halo meanwhile has undergone

significant contraction due to cooling, which may be another factor encumbering the

emergence of an outflow.

We find in this model that kinetic feedback alone does not suffice to launch an outflow

of any kind; instead, the disc as a whole is ripped apart after several 100 Myr. The

sound waves caused by turbulence in the disc do not show any interaction with the halo,

while superbubbles driven by thermal and kinetic energy are capable of heating the halo.

Comparison of the two graphs in the right panel of Figure 4.3 shows that turbulence in

both F-ST and F-KE stabilises at the same level; hence the respective snapshots at 250

Myr for both runs do not differ significantly from each other. Figure 4.4 confirms that

in F-ST the halo is successfully heated up by an outbound bubble, leaving behind an

extended region of gas as hot as 107 K. F-KE however shows only small temperature

fluctuations within the halo.

Though, it has to be taken into account that already in run F-ST outflows could hardly

escape the disc at all. Therefore it cannot be excluded yet that kinetically driven

winds can arise; we shall examine this issue again in Section 6.2 with a different set of

parameters.
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Figure 4.4: Halo temperature is plotted against radius r at a polar angle θ = 0.27π,

for runs F-ST (solid line) and F-KE (dashed line), respectively.

4.4 Implications

In summary, we can conclude this chapter with a number of valuable implications on the

current setup. We can reproduce at least a temporary outflow by injecting both thermal

and kinetic energy, but not with kinetic energy alone. This points to the possibility of a

resolved multiphase ISM playing a greater role in the emergence of galactic outflows. In

order to conduct further studies on the subject, however, it seems reasonable to adapt

some modifications on the current model regarding the methods and setup parameters:

Firstly, the disc-halo system is exceptionally massive, coming close in weight to the mass

of the Milky Way. As galactic winds are a phenomenon known to occur with the much

lighter Lyman-break galaxies at high redshift [e.g. Pettini et al., 2000], disc masses of

order 109 M⊙ to only a few 1010 M⊙ seem more plausible. The high disc mass likely also

oppresses the entrainment of gas filaments from the disc body. Secondly, the current

SN implementation allows for very powerful events of 1000 SNe to occur. This is also

due to the large cell mass, which, due to the spherical grid, is relatively large in the

outer disc cells. We therefore attempt resolve this bias in the next chapter, so local star

formation will no longer depend on the size of the respective grid cell. Since bubbles

more close to the centre of the disc were the only ones we found escaping from the disc, it

seems likely that with more SN events taking place in the inner disc, a more continuous

outflow can be triggered. Keeping a given SFR and shifting the spatial dispersion of SN

events to the inner cells also means going from a few large events to more smaller events.

The effects of the event size will once more be addressed in Section 6.4. Thirdly, the

halo profile may have an impact on the outflow velocity once it has developed, as the
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rapidly declining pressure in outward direction allows outflowing material to proceed

unhindered. It is thus necessary to implement a halo profile which allows the baryonic

halo density, and hence pressure, to converge at large radii.

However, the radially constantly declining baryonic halo density combined with a mas-

sive, gas-rich disc are favourable conditions for emerging winds due to the radially

declining thermal halo pressure and the high SFR. Still, a strong supersonic wind did

not emerge in our models, which suggests that galaxies comparable in mass to the Milky

Way generally favour a subsonic, or “fountain” solution (for the exact distinction be-

tween winds and fountains, see Chapter 6). Our results here therefore compare e.g. to

the large SINS galaxies [Genzel et al., 2008] with their high SFRs.

Supersonic winds would furthermore produce coherent velocity fields on both sides of

the disc. The magnetic field vectors would then correspond to the velocity vectors,

since magnetic fields would be shaped by entrained material. Mao et al. [2010] could

prove through Faraday rotation that the Milky Way lacks a galactic dipole magnetic

field in relative vicinity to the Sun, suggesting the absence of a large-scale galactic wind.

This absence of winds in Milky Way-like systems is in agreement to our simulations:

our simulated discs are rich in gas compared to the Milky Way, implying more efficient

star formation and hence SN feedback. In turn, one would not expect stronger outflow

activities in the Milky Way than in our models.



Chapter 5

Galactic winds with a converging

halo density profile

5.1 Preconsiderations

This chapter is focussed onto two aspects that have an influence on the strength and

geometry of galactic outflows: Firstly, we aim to investigate the effect of clustering SN

events in time, causing stronger but less frequent superbubbles to occur, and further

shifting the radial spreading of powerful events towards the inner disc cells, which we

assume to represent the part of the galaxy where star formation is most intense. Sec-

ondly, we compare two different gas discs of equal mass to probe the effects of different

radial gas density distributions. All of our simulations have been updated with respect

to the setup in Chapter 4; this concerns the gas density distribution in the halo, the

shape of the external halo potential, and the significantly reduced disc mass. Details

are given below.

5.1.1 Resolution

We have run several simulations, resolving typical disc cells at 1 kpc radius to respective

resolutions of 12, 16, 30, 33, 36 and 65 pc, using local star formation criteria (see

Subsection 3.4.1). The results are shown in Figure 5.1. It can be seen immediately

that the presented approach only allows for a small range of variation in the resolution.

Finely resolved discs imply smaller individual cell masses, which result in a lower number

of cells qualifying for star formation, as the Jeans mass does not change with increasing

71
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Figure 5.1: Supernova rates at different resolutions.

resolution and is the minimum mass for star formation. At 12 pc resolution, no stars

form at all over several 10 Myr, meaning that cells hardly ever overgo the Jeans mass.

Conversely, at the lowest resolution, high cell masses lead to a massive outbreak of

SNe, which soon thereafter stops entirely as a result of complete disruption of the disc

structure. Reasonable results can be found only within a resolution range of 30− 36 pc,

where the overall star formation rate of the system lies within a range one would expect

for a system of comparable mass undergoing a starburst phase. Simulations with the

current setup will thus be carried out exclusively at 33 pc resolution.

5.2 Setup and initial conditions

As we have established in the previous chapter, the external halo potential according

to equation (2.58) leads to a density which continuously decreases with radius. This

allows escaping material from the disc to proceed very far out, since pressure resistance

too decreases with radius. On the other hand, outflows are encumbered by the large

total mass of the disc-halo system. We now improve the model by firstly setting up

a converging halo density profile, and secondly reducing the total mass of the system

in order to assess the constraints on the onset of galactic outflows more accurately. In

addition, the boundaries of the simulation box are adapted to 0.4 kpc < r < 10.2 kpc,

0.04π < θ < 0.96π and −0.04 π < φ < 0.04π. The simulation domain comprises

300×96×10 cells, keeping a 33 pc resolution of the typical disc cell at r = 1kpc. Table
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Table 5.1: Simulation setup parameters for the set of sim-

ulations presented in Chapter 5.

Run Resolution Clustering function ζ(r) Disc density profile

Res12 12 pc ζ(r) = 3 r−2 ρdisc = const

Res16 16 pc ζ(r) = 3 r−2 ρdisc = const

Res30 30 pc ζ(r) = 3 r−2 ρdisc = const

Res33 a 33 pc ζ(r) = 3 r−2 ρdisc = const

Res36 36 pc ζ(r) = 3 r−2 ρdisc = const

Res65 65 pc ζ(r) = 3 r−2 ρdisc = const

CD-1 33 pc ζ(r) = ζ = 1 ρdisc = const

CD-1R 33 pc ζ(r) = r−2 ρdisc = const

CD-3 33 pc ζ(r) = ζ = 3 ρdisc = const

CD-3R 33 pc ζ(r) = 3 r−2 ρdisc = const

CD-4 33 pc ζ(r) = ζ = 4 ρdisc = const

CD-4R 33 pc ζ(r) = 4 r−2 ρdisc = const

ED-3 33 pc ζ(r) = ζ = 3 ρdisc(r) ∝ e−r/rs,D

ED-4 33 pc ζ(r) = ζ = 4 ρdisc(r) ∝ e−r/rs,D

a“Res33” and “CD-3R” are two denotations for the same run.

9.1 in the Appendix contains the SF prescription, and the most important halo and disc

setup adjustments for all simulations.

5.2.1 Halo setup

The constant rotational velocity at large radii, which the halo model by Flynn et al.

[1996] is based on, ensures in a certain way, that the potential and hence the halo gas

density does not flatten outwards. We therefore use an alternative potential description

for the next set of simulations: primarily, we want to ensure the convergence of baryonic

density to a preset background value. Further, the largest baryonic density decrease in

radius shall be within the simulation domain, followed by an outer region with compara-

tively little change in density over radius. A density profile like this is expected to allow
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outflows still to escape from the disc, but opposing significant pressure to outbound

shock fronts at higher radii, occasionally causing them to stop and fall back onto the

disc. The exact shape of our potential is chosen such that it converges against the NFW

profile with radius, but in the inner region allows the baryon density to decrease signif-

icantly. This implies a relative steep potential slope close to the centre, which actually

encumbers the emergence of outflows. It is hence suggestive to investigate the effects of

SN clustering (see Section 5.3 below) using this specific setup.

It is known from Navarro et al. [1996], that the total density in a standard halo can be

described by

ρtot(r) =
ρ0,DM R3

s

r (r +Rs)
2 , (5.1)

where ρ0,DM is the background density of dark matter, and Rs is the scale radius of

the halo. We can now calculate the cumulative halo mass Mcum from the density by

integration over the radius r:

Mcum(r) = 4π

∫

ρ0,DM R3
s

r (r +Rs)
2 r dr = 4πρ0,DM R3

s

[

Rs

r +Rs

+ ln; (r +Rs)

]

, (5.2)

which, trivially assuming a potential

Φ(r) = −GMcum

r
, (5.3)

leads to a form of potential which allows the baryonic density and pressure to converge

at high radii:

Φconv(r) = −4π Gρ0,DM R3
s

r

(

Rs

r +Rs

+ ln (r +Rs)

)

. (5.4)

Our system comprises only a low mass; assuming a dark matter background density

ρ0,DM = 1MP cm
−3 = 1.7 × 10−24 g cm−3, and a scale radius of Rs = 2.5 kpc, the cu-

mulative mass at 25 kpc radius amounts to a total of 7.3 × 109 M⊙. This includes the

mass of the disc, of which we calculate the gas density distribution below. The baryonic

density distribution in the halo is now obtained using equation (4.1),

ρb(r, θ) = ρ0 exp

(

−Φtot(r, θ)
0.59MP

kB T

)

, (5.5)
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Table 5.2: External potential parameters for

simulation set 2 (CD and ED runs).

Component Parameter Value

Bulge rC1
0.9 kpc

MC1
7.59× 107 M⊙

rC2
0.14 kpc

MC2
4.05× 108 M⊙

Disc b 0.1 kpc

a1 1.94 kpc

MD1
1.67× 109 M⊙

a2 5.81 kpc

MD2
−7.34× 108 M⊙

a3 11.62 kpc

MD3
8.35× 107 M⊙

with Φtot now being Φdisc + Φcent + Φconv. We now choose the values ρ0 = 3.4 ×
10−30 g cm−3 for the convergence value of the gas density, and 4.8× 105 K for the overall

halo temperature. The pressure, finally, is obtained again from the ideal gas equation

(2.61).

5.2.2 Disc setup

The disc setup is basically the same as described in Subsection 4.2.2, however, with

different parameters. Our intention is to simulate a low-mass disc galaxy, comparable

in mass to the LBGs observed at redshift z = 3− 4. We scale down the length-related

parameters used by Flynn et al. [1996] by a factor of 1/3, and the mass-related ones by

a factor of 0.025. The exact values are given in Table 5.2.

The gas density in the disc is obtained via

ρdisc(r) = ρdisc,0 exp

(

− r

rs,D

)

, (5.6)

with rs,D being the disc scale radius, and ρdisc,0 = 3.5×10−23 g cm−3. The density profile
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is cut off at an outer radius of 3.3 kpc. The disc has a vertical height of 250 pc, giving

it a total gas mass of 1.38× 109 M⊙, which is about 90 per cent of the mass implied by

the disc potential. The disc gas pressure follows from the ideal gas equation (2.61), just

as for the halo gas pressure.

As an alternative to the exponential distribution, one could use a constant gas density

profile. This special type of gas disc profile has been observed e.g. by Bendo et al. [2010]

in NGC 2403, and is investigated here in Section 5.4. If we choose the disc gas density

to be constant for all radii and keep its total gas mass, we obtain an overall value of

ρdisc(r) = ρdisc = 5.5 × 10−24 g cm−3. In particular, this setup is used exclusively in

simulations CD-1, CD-3, CD-4, CD-1R, CD-3R and CD-4R. By comparing exponential

gas distributions to constant ones, we attempt to capture the extreme cases of gas-rich

galactic discs.

5.3 Clustering of SN events

We found in the last chapter, that due to the spherical grid geometry, the outer disc cells

tend to enclose higher masses of gas, which imposes a bias on the local star formation

recipe we use. It is e.g. possible that a number of smaller cells close to the disc centre

release several events spread out in time but each event being too weak to contribute

significantly to an outflow; on the other side, a contiguous region of smaller cells as a

whole could release an event powerful enough to escape the disc. These circumstances

call for modifications in the probability function calculating the likelihood of each cell

to trigger SNe. To reduce the spreading in time from a multitude of small to fewer

and larger ones, we need to introduce a factor, which, on the one hand, reduces the SN

event probability for a cell, but on the other increases the event strength by the same

amount. A further option to resolve the cell size bias would be to expand the factor

by a r−2-term that accounts for the cell volume increase with radius, essentially making

it a function inversely proportional to the square of the radius r, given in kpc, which

we call the clustering function ζ(r) = const · (r/kpc)−2. The probability for one cell to

release a SN event thus becomes

PSN,loc =
ρcell Vcell

100M⊙

· ǫSF · δt

tdyn
· ζ(r), (5.7)

whereas the number of SNe per event, the total energy released and the mass converted
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into stars are each multiplied by the factor ζ(r). This may occasionally lead to a lack of

mass available especially in the innermost cells. However, since we assume a star forma-

tion efficiency ǫSFR = 0.3, ζ(r) < 3.3 is generally unproblematic. For a constant ζ = 4,

the SN events would require a 1.2 times higher local gas mass. In the course of one run,

we have counted roughly 400 SN events, which is one in 40 disc cells triggering SNe.

The disc will hence face a gas deficite of 0.5 per cent only, which should not significantly

change the disc dynamics. In case of ζ ∝ r−2, the inner cells would require several times

higher gas masses. On the other hand, the excessive gas mass in the outer disc (i.e.

> 1.1 kpc for ζ = 4 r−2 and ǫSFR = 0.3) will easily over-compensate the deficite to the

total disc mass budget. Our simulation set includes the following runs: a gas disc with

constant density profile and without the factor ζ in the probability function (i.e. ζ = 1;

denoted “CD-1”), is compared to two runs with identical disc setup (denoted “CD-3”

and “CD-4”), in which ζ is a constant factor of 3 and 4, respectively, in order to study

the effects of a temporal SN event clustering alone. Further, it encompasses three runs

CD-1R, CD-3R and CD-4R, where we then cancel out the cell bias by setting ζ = ζ(r)

to r−2, 3r−2 and 4r−2, respectively (see Table 5.1).

Our first point of interest is the effect of feedback on the shape of the disc-halo system.

Simulation CD-1 features no modification of the star formation recipe, however, due to

the constant density distribution of disc gas, violent star formation and hence feedback

occurs in the outer disc parts. As a result, the disc becomes highly turbulent and un-

stable in the outer region (compare Figure 5.2, upper panel) after 25 Myr. Early on, an

outflow evolves on only one side of the disc, which is strong enough to cross the outer

boundary of the simulation domain at 10 kpc. The asymmetric nature of the outflow

indicates that the system is just on the brink of being capable to exhibit outflows. This

assumption is supported by comparison to simulation CD-1R (Figure 5.2, lower panel),

where star formation is shifted toward the inner disc regions by the clustering function

ζ = r−2. Star formation in both simulations are within the same order of magnitude,

however, in run CD-1R the notably weaker feedback in the outer disc does not affect

the disc stability. On the other hand, even a slightly higher feedback in disc regions at

r < 1kpc does not trigger an outflow. We find weak shock fronts expanding into the

halo, but substantial outflows or even a constantly blowing wind are absent. Figure 5.3

shows the outflow velocities in both runs, compared to the local sound speed. None

of the outflows are supersonic, and regions where material falls back into the disc are

common.
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Figure 5.2: Simulations CD-1 (top row) and CD-1R (bottom row). The elapsed

time is denoted above each snapshot. Shown is the logarithm of mass density in

meridional midplanes.
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Figure 5.3: Outflow velocities vout (solid lines) compared to local sound speed cs

(dashed lines) in simulations CD-1 (blue) and CD-1R (red), respectively. The plot

shows a radial cut through the profile at θ = 0.91π, after 25 Myr.

Run CD-3 reduces SN probability for every cell by a factor of 3, while increasing event

strength by the same amount. In Figure 5.4 we can see that the outer disc is violently

blown apart by massive forces due to feedback early on. The inner disc gives rise to

stellar feedback strong enough to set up considerable outflows, initiated by two super-

bubbles expanding into the halo on both sides of the disc and sweeping a path through

the halo. They leave behind a rarefied region of conical shape, which gives less resistance

to subsequent bubbles than the initial halo gas. Other than in CD-1 and CD-1R, the

first bubbles are followed by several others of comparable strength. CD-3R shows the

same result, however the outer disc remains intact. This is due to the clustering function

ζ = 3 r−2; cells at radii larger than
√
3 kpc now face a larger probability of a SN event,

while the event strength is reduced accordingly. Therefore, the outer disc in CD-3R is

turbulent, but not disrupted. Figure (5.5) reveals that the outflows are exceeding the

sound speed by a large factor in both CD-3 and CD-3R, meaning that the outflowing

material likely reaches the escape velocity.

Runs CD-4 and CD-4R are displayed in Figure (5.6). The respective clustering func-

tions are ζ = 4 for CD-4, and ζ = 4 r−2 for CD-4R. The geometry of the outflows and

the stability of the discs compare to those found for CD-3 and CD-3R, respectively.

Again, strong SN bubbles in the inner disc give rise to subsequent shock waves escaping

the disc, and in CD-4R the disc is widely destroyed due to the efficient feedback in
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Figure 5.4: Simulations CD-3 (top row) and CD-3R (bottom row). The elapsed

time is denoted above each snapshot. Shown is the logarithm of mass density in

meridional midplanes.
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Figure 5.5: Outflow velocities vout (solid lines) compared to local sound speed cs

(dashed lines) in simulations CD-3 (blue) and CD-3R (red), respectively. The plot

shows a radial cut through the profile at θ = 0.91π, after 30 Myr.

its outer regions. However, the velocity of the outbound material (Figure 5.7) points

out some difference to simulations CD-3 and CD-3R: Here, only CD-4R shows a clearly

supersonic outflow, which, in the outermost parts of the simulation domain, comes close

to 1000 km s−1. CD-4 exhibits both regions where outflow is subsonic and regions of

supersonic outflow velocity. In CD-4R, star formation from 1 kpc inwards increases to

higher values compared to CD-4. Since both discs share the same density profile, we

would indeed expect faster outflow velocities in CD-4R (compare also Section 5.5)

We can hence outline some clear trends from all six CD runs. First of all, more clustered

energy input, which occurs for values of ζ > 1, proves beneficial for the emergence of

an outflow, which can be seen by comparing CD-1 and CD-3. On the other hand, the

reduction of superbubbles in size, which happens in the outer disc where ζ < 1, prevents

feedback from being too efficient. Especially in CD-3 and CD-4, disc stability is heavily

disturbed as a result of the massive SN events arising in the larger, outer disc cells. Sec-

ondly, stronger SN events likely account for stronger and faster outflows, as is affirmed

by the velocity profiles of CD-1R, CD-3R and CD-4R. A certain amount of clustering of

SN events is however required to allow the bubbles to escape the disc, since in CD-1R

there is not even a continuous outflow, indicating that escaping bubbles develop only

occasionally if provoked by a large number of comparatively small events. Since the

clustering function does not affect the averaged total of SN events in the disc over a
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Figure 5.6: Simulations CD-4 (top row) and CD-4R (bottom row). The elapsed

time is denoted above each snapshot. Shown is the logarithm of mass density in

meridional midplanes.
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Figure 5.7: Outflow velocities vout (solid lines) compared to local sound speed cs

(dashed lines) in simulations CD-4 (blue) and CD-4R (red), respectively. The plot

shows a radial cut through the profile at θ = 0.91π, after 30 Myr.

given time span, we expect outflows to be stronger in those runs where the disc remains

intact: If less energy is dissipated into the outer disc, more energy will be released close

to the centre, where larger bubbles will give rise to a faster outflow. This expectation is

met in the runs CD-4 and CD-4R, while CD-3 and CD-3R show no clear difference in

their outflow velocity.

It should be made clear however, that the clustering function does only alter the average

number of SNe per bubble. By shifting the trend from smaller and more frequent to

larger and less frequent events if larger than unity, and vice versa if less, the average

bubble becomes larger towards the disc centre and smaller outwards. The effects pro-

voked by the bubble size on the outflow are again discussed in Section 6.6, where bubble

sizes are a preset number for every simulation.

5.4 The disc density profile

We have seen in the previous section that efficient feedback, especially in the outer limb

of the disc, can disturb disc stability enough to cause partial disruption of the system.

Temporally spreading the SN events can avert this effect, but in the first place our

SN event sizes are determined by cell mass and hence gas density. It seems possible

that the disc must not necessarily dissolve as a result to strongly clustered SN events,
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but that a reduced density of the outer disc regions may suffice to keep the system stable.

The simulations with ζ = 3 and ζ = 4 have both been repeated with an exponential

density distribution, as is described in Section 5.2. Figure 5.8 displays the runs ED-3

and ED-4 at different simulated times, respectively. Interestingly, we find that in ED-3

large portions of gas from the disc are shifted away from the midplane in both directions

due to feedback at 20 Myr, but the gas partially settles back into its original position

at 30 Myr. This may be the limiting case where feedback is just barely insufficient to

disrupt the disc. The system also features a highly supersonic outflow (compare Figure

5.9), whereas the entrained filaments are fewer and larger as e.g. in CD-3R. Run ED-4

does not feature an outflow on the other hand, which is an indicator for the large super-

bubbles capable of first launching the outflow to occur only occasionally. Only a small

region in between 4 and 5 kpc shows supersonic outflow movement. Instead, the disc in

ED-4 is blown apart again, as a result of stronger clustering in comparison to ED-3.

If we compare the runs ED-3 and ED-4 to CD-3 and CD-4, we actually find, that the

exponential density distribution reduces the instability in the outer disc, but if cluster-

ing is strong enough, the effect becomes too weak at some point. Stronger temporal

clustering of SN events still has a negative effect on disc stability in the outer parts. On

the contrary, in the inner parts, stronger clustering should lead to faster, more violent

outflows, independent of the inner disc gas density (note that higher density and hence

mass results in larger SN events, but outflow velocity remains constant due to E ∝ M).

The absence of such outflows in ED-4 may be a statistical effect and might set in at

a later point in time. Supersonic outflows nevertheless appear in ED-3, at a notably

higher velocity than in CD-3, which confirms our assumption. Conclusively, we find

that the disc density profile does not affect the overall outflow dynamics as much as the

clustering function. Since an exponential gas disc contains more mass in its innermost

kpc than a disc of constant density and equal mass, large events should happen more

frequently in an exponential disc. However, as we have seen from the simulations in this

chapter, it seems to be of more importance that large bubbles comprising many SNe

develop at all; a high value for the clustering function ζ can hence well compensate a

lower density.
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Figure 5.8: Simulations ED-3 (top row) and ED-4 (bottom row). The elapsed

time is denoted above each snapshot. Shown is the logarithm of mass density in

meridional midplanes.
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Figure 5.9: Outflow velocities vout (solid lines) compared to local sound speed cs

(dashed lines) in simulations ED-3 (blue) and ED-4 (red), respectively. The plot

shows a radial cut through the profile at θ = 0.91π, after 30 Myr.

5.5 Implications

The presented simulations so far have proven capable not only of launching strong, su-

personic outflows; in some cases even a continuous flow of material from the disc far into

the halo could be established. This vigorous outflow is likely facilitated by the chosen

system setup; we have a low-mass disc which is very rich in gas, making up about 90

per cent of the total disc mass. High-density regions, like filaments entrained by out-

flowing bubbles, or even disc fragments can easily escape the potential. Our potential

was chosen in a way that, though generally shallow due to the low-mass disc, it has a

steep slope close to its centre, but flattens out quickly towards higher radii.

As expected, the initially steep halo profile proves to be an inhibitor for outflows in

several cases. Run ED-4 and CD-1 show no signs of superbubbles entirely escaping the

disc, whereas in run CD-1R not even substantial SN clustering can overcome the steep

potential slope. However, on the other hand, we see winds in the other simulations

(CD-3, CD-3R, CD-4, CD-4R and ED-3) which do not only reach supersonic velocities,

but also cross the edge of our simulation box. There is no case in which bubbles es-

caping from the disc are eventually stopped as a result of thermal halo pressure, which

converges at larger radii, providing a near-constant opposing force. However, compar-

ison to run F-ST in the previous chapter yields some information: The more shallow

potential slope at low radii in the logarithmic halo suggested by Flynn et al. [1996] did
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not lead to a continuous outflow in the case of F-ST; the initially steep profile chosen in

this chapter however allowed strong outflows with numerous filaments in several runs.

Steep potential slopes should in fact oppose the dense filaments in escaping the gravity

of the system. It is therefore thinkable that not only the potential of the halo, but also

the disc mass is crucial to outflows. The setup in Chapter 4 featured a mass-rich Milky

Way-like disc, whereas the current setup comprises just a low-mass disc. In the next

setup we will investigate a configuration where disc mass is of order 1010 M⊙. We should

then be able to witness the limiting case where bubbles and filaments escape the disc,

but are not powerful enough to be blown away entirely, and eventually fall back.

By implementing the function ζ, we could study the effect provoked by different degrees

of SN event clustering on the outflows. Higher clustering at all disc radii has been found

to result in higher feedback activity for most cases; in the disc centre this feedback

causes a strong, continuous wind, whereas the outer disc is at least partially disrupted.

If clustering is dependent on the radius, and ζ(r) strongly clusters SN events at low

radii but essentially has the opposite effect of spreading out SN events at high radii, the

outer disc will remain stable, while at the centre winds still form.

The disc density profile, however, proved to have only little influence on the results.

This can easily be shown as follows: Increasing disc density by a given factor in a large

region leads to larger SN events providing a higher amount feedback energy by just that

same factor. If we further assume that most large bubbles originate deep within the disc,

the overlying, more massive material will also require more energy to be driven out and

form the characteristic filaments. Due to the feedback energy E being proportional to

mass M , the outflow velocity v =
√

2E/M will stay just the same as for a comparable

region of lower density. Our simulations with exponential disc density profiles confirm

that there is no systematic deviation from those with constant disc density profile.

However, our resolution tests have shown that reasonable star formation rates are only

possible for a narrow range of resolutions, which is a consequence of the locally deter-

mined SF recipe used here. We will investigate in Chapter 6 how to implement a SF

law that avoids resolution dependence and in fact resembles a Kennicutt-Schmidt like

prescription, which is commonly found in disc galaxies.
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Chapter 6

Galactic winds in a NFW halo

6.1 Preconsiderations

We have already considered two possible launching mechanisms for galactic outflows

in Chapter 4. Their presumable effects have been explained thoroughly in Section 4.1.

Firstly, we argued that overpressured SN superbubbles may be capable of expanding

out of the disc and expanding far into the halo, thus sweeping a path for later bubbles

which wil then continuously drive a galactic wind. An investigation of this theory in-

volves the resolution of a multiphase ISM in our models. Secondly, we considered kinetic

feedback from SNe alone to play a key role, as it might be just providing enough energy

to drive a galactic wind kinetically. However, the high disc mass in the corresponding

simulation F-KE proved to be a major obstacle to drawing a definite conclusion on this

matter. In this chapter we hence modify the setup once more to achieve more reliable

results. The details on the setup are explained in the following section. Furthermore,

we make use of the star formation recipe explained in subsection 3.4.2, which is based

on the Kennicutt-Schmidt law, since local star formation criteria have proven to result

in different SFRs for different resolutions.

Additional candidates for wind driving mechnisms are also taken into consideration.

The development of buoyant SN bubbles, in reality as well as in our models, will be

subject to discussion in this chapter. Since the new star formation recipe involves a

preset size of single events (i.e. the number of single SNe forming one superbubble),

we also examine the question if this bubble size makes a difference to the outcome. In

Chapter 5 we provided the clustering function ζ(r), which essentially increased the av-

erage bubble size while reducing their probability. We found that temporally clustering

89



90 Galactic winds in a NFW halo

several small bubbles into fewer large ones proves effective in triggering outflows. In

order to cross-check this result, several additional simulations with various bubble sizes

involving star formation with the Kennicutt-Schmidt-based prescription are conducted

in this chapter.

We begin with an investigation how the method of SN energy injection affects the

emerging wind. For this purpose, we have run a set of simulations with ζ0 = 100. One

simulation uses the Sedov-Taylor blast wave model, and hence both kinetic and thermal

energy are injected with every SN event (denoted “ST100”). In addition, two more

models injecting a purely thermal energy fraction of 40 per cent (denoted “TE0.4”),

and 60 per cent (“TE0.6”) of the total SN energy yield, respectively, and another one,

injecting a purely kinetic energy fraction of 40 per cent (“KE0.4”), have been made. The

characteristics of the pressure-driven and the kinetic energy driven cases are discussed

in the first two subsections, respectively.

The third subsection includes an analysis about the contribution of buoyancy to the wind

energy in ST100, which will be compared to our theoretical consideration in Subsection

6.1.1.

All the runs presented in Sections 6.3, 6.4 and 6.5 include a cooling halo. Since halo

pressure is reduced by cooling, winds will arise comparatively easily in this case, allowing

for more prominent effects more suitable for later comparison. Section 6.6 investigates

the question how the sizes of SN bubbles can affect the strength of galactic winds; for this

we have run another set of three simulations featuring Sedov-Taylor blast wave models

and different event sizes each. In contrast to the previous runs, the runs in subsection

6.6 are each performed twice, with both a cooling and a non-cooling halo, respectively,

to investigate the limiting cases of the possible effects of varying metallicities in such

objects. We show that the different halo pressure has a significant effect on the wind.

All of our results herein will then be compared in the final section.

6.1.1 Buoyancy of supernova bubbles

An interesting physical quantity is the entropy index S. Here, we calculate S at relevant

locations within the underlying NFW halo at redshift z = 3.5. The entropy index is

defined as

S =
p

nγ
, (6.1)
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where n is the number density of particles, the units of S being given in keV cm2.

Generally, a bubble with an entropy index higher than its environment will experience

a buoyant force, meaning that with S being known everywhere, we can easily determine

the height a buoyant bubble can reach.

With the pressure expression from equation (2.61), the entropy index S transforms into

S =
kB T

nγ−1
. (6.2)

Let us consider a bubble produced by a single SN in an early state of evolution. The

entropy index is highest within the central hot gas phase of the bubble, and this is the

region most relevant regarding buoyancy. Note that S is defined such that during the

process of adiabatic expansion it is not going to change over time. For the hot bubble

interior, S may decrease due to mixing and cooling. Cooling times are long compared

to the simulation time, and mixing shall be neglected here in the first instance. This in

turn means that the phase of evolution in which we investigate a bubble does not matter

all too much. Since the rarefied, hot bubble interior has a very long cooling timescale,

cooling is not significant here. A typical SN will release about 1051 erg of energy. From

the equation of motion for a blast wave in the thin shell approximation, it follows that

60 per cent of this energy will be in the form of thermal energy. Implying an ejecta mass

of 8M⊙ and a bubble in an advanced state, e.g. with a radius of 10 pc to start with,

the density will be of order 0.1Mp cm
−3. It follows then, assuming a temperature of

108 K, that the entropy index from equation (6.2) reaches several 10 keV cm2. Given

a typical entropy index for the gas disc of order 10−4 keV cm2, the former value is

certainly enough to raise the bubble away from the disc midplane into the disc-halo

transition region. In our example, the values for S(rs) and S(rvir) in the halo amount to

9.1 keV cm2 and 21.2 keV cm2, respectively. Hence S inside a bubble formed by several

SNe will be typically high enough to exhibit buoyancy effects within the halo at least

at low radii. This conclusion might however be affected by the (unknown) mixing of

the different ISM phases. In our simulations, we include the buoyancy effect of the

superbubbles. We inject the bubbles with even higher entropy index (compare Section

6.5 below), because numerical mixing - we have to inject the superbubble on a scale of

a few grid cells - strongly reduces the entropy index. The energetic effect of buoyancy

is however likely minor: While ascending, the bubble will vastly increase in size due to

the radially exponentially decreasing environment pressure, thus allowing for its density

to drop to negligible values compared to the inner halo environment. Because of the

latter, buoyancy in the halo will likely affect only superbubbles in an advanced state of

evolution, where their diameter has already grown up to the order of 100 pc. In that
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case, the acquired energy during ascension will be

Easc = ρhalo Vbubble ghalo h, (6.3)

where ρhalo is the halo density, ghalo its gravitational acceleration, Vbubble the bubble

volume and h the height of ascension. In particular, a 100 pc-bubble will acquire some

1047 erg of energy while ascending 1 kpc. We shall keep these interim results in mind for

comparison with our simulations.

6.1.2 Resolution

We have again investigated the resolution dependence of the SFR (see Chapter 7 below

for a discussion of the dependence of the outflow rates on resolution), varying the refer-

ence resolution at r = 1kpc radius from 16 pc to 65 pc (R16 - R65, compare Table 6.1)

for a standard simulation.

Assuming one SN in 100 M⊙ of stars formed, we find the SFR in our 1010 M⊙ system

at all resolutions to be about 10M⊙ yr−1, yielding an SFR per unit mass of 10−9 yr−1.

As a comparison, this is several ten times the SFR per unit mass in the Milky Way,

which would be of a few 10−11 yr−1. Our SFR is therefore in the relevant range; e.g.

Pettini et al. [2001] observe values of about 10−70M⊙ yr−1 for their sample of 1010 M⊙-

LBG’s at redshift z ∼ 3, which, accordingly, would result in an SFR several 10−9 yr−1

per unit mass (or a few 10−1 SNe per year). The overall SN rates of our model galaxy

are displayed in Figure 6.1 for all resolutions. The graph for 65 pc resolution shows the

strongest deviation, indicating that too coarse resolutions will notably affect the star

formation rate. All graphs agree within 26 per cent, however, if we regard only resolu-

tions of 36 pc and finer, the error reduces to nine per cent.

6.2 Setup and initial conditions

6.2.1 Halo setup

LBGs with winds typically occur at redshifts between 3 and 4 (compare Chapter 1). Let

us therefore consider a NFW halo in hydrostatic equilibrium at redshift z = 3.5. The
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Table 6.1: Simulation parameters for simulation set 3 (ST, KE, TE, B and NC runs).

Run Resolution SN energy a Event size ζ0 Residual density b Halo cooling

Ekin Etherm

R16 16 pc 40% 60% 100 SNe 10−28 g cm−3 yes

R30 30 pc 40% 60% 100 SNe 10−28 g cm−3 yes

R33 c 33 pc 40% 60% 100 SNe 10−28 g cm−3 yes

R36 36 pc 40% 60% 100 SNe 10−28 g cm−3 yes

R65 65 pc 40% 60% 100 SNe 10−28 g cm−3 yes

ST20 33 pc 40% 60% 20 SNe 10−28 g cm−3 yes

ST50 33 pc 40% 60% 50 SNe 10−28 g cm−3 yes

ST100 33 pc 40% 60% 100 SNe 10−28 g cm−3 yes

ST200 33 pc 40% 60% 200 SNe 10−28 g cm−3 yes

KE0.4 33 pc 40% 0% 100 SNe 10−28 g cm−3 yes

TE0.6 33 pc 0% 60% 100 SNe 10−28 g cm−3 yes

TE0.4 33 pc 0% 40% 100 SNe 10−28 g cm−3 yes

B100 33 pc 40% 60% 100 SNe 10−27 g cm−3 yes

NC20 33 pc 40% 60% 20 SNe 10−28 g cm−3 no

NC50 33 pc 40% 60% 50 SNe 10−28 g cm−3 no

NC100 33 pc 40% 60% 100 SNe 10−28 g cm−3 no

NC200 33 pc 40% 60% 200 SNe 10−28 g cm−3 no

aThe energy released by a SN event is subdivided into a kinetic and a thermal component.
bThe term ’Residual density’ refers to the density left over in a cell after being subject to a SN

event.
c“R33” and “ST100” are two denotations for the same run.
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Figure 6.1: Cumulative supernova rate at a given time for our standard run at

different resolutions (R16 - R65, compare Table 6.1).

critical background density of baryons in the intergalactic medium (IGM), ρcrit,b, can

be obtained via

ρcrit,b =
3ΩBH(z)2

8πG
(6.4)

[Ohta, Kayo and Taruya 2003], where

H(z)2 = H2
0

(

ΩM(1 + z)3 + Ωk(1 + z)2 + ΩΛ

)

, (6.5)

with Ωk = −0.02. For a flat Lambda Universe it follows from the Friedmann equations

that

ΩM(z) =
ΩM,0

ΩM,0 +
1−ΩM,0

(1+z)3

. (6.6)

Using the present-day parameters of Ωb,0 = 0.044 and ΩM,0 = 0.27 one obtains ΩM(z =

3.5) = 0.97 and Ωb(z = 3.5) = 0.16, which, by combining equations (6.4) and (6.5),

yields ρcrit,b = 1.4× 10−28 g cm−3.

By choice, the model system shall have a virial radius rs = 25 kpc. With r200 = 0.94 rvir
at z = 3.5, this immediately yields a scale radius rvir = 4rs = 5.9 kpc by invoking a

value for the concentration parameter c200 = r200/rs = 4, which is verified by Zhao

et al. [2009] for our underlying redshift. The baryonic mass confined within r200 may be

pinned down via the critical baryon density, ρcrit,b, to a value of M200,b = 2.2× 1010 M⊙.

As mentioned above, we assume that the initial halo is in hydrostatic equilibrium, and

isothermal, suggesting a radially exponential distribution of baryonic matter (equation

(2.59)):

ρb(r, θ) = ρcrit,b exp

(

−Φtot(r, θ)
0.59MP

kB T

)

(6.7)
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where MP is the proton mass, and

Φtot(r, θ) = Φdisc(r, θ) + Φcent(r) + ΦNFW(r), (6.8)

with

ΦNFW = − GM200

rs f(c200)

ln (1 + r/rs)

r/rs
(6.9)

being the NFW potential dominating at large radii. Both the disc and the central

bulge potential components have already been explained in Section 3.7. The density

distribution according to equation (6.7) is visualised in Figure 6.3. The isothermal halo

has a temperature T = 6.0 × 105 K, the density ρb at the inner edge r = 0.4 kpc does

not exceed typical disc density values, which are of order 10−24 g cm−3. By integrating

the now well-defined baryonic density profile, we obtain a baryonic mass of 1.0×109 M⊙

being situated in the hot halo. The larger part ofM200,b, still amounting to 2.1×1010 M⊙,

must therefore be considered to have settled into the disc. With the halo density ρb
given for all radii, the halo pressure p results from the ideal gas equation (2.61)

p = nbkBT. (6.10)

The task of constructing an isothermal halo in hydrostatic equilibrium is encumbered

by the condition that its density should converge against a certain background value as

described above. A halo potential of the form

ΦDM =
v2rot
2

ln

(

(

r

kpc

)2

+

(

rs
kpc

)2
)

(6.11)

given by a constant rotational velocity vrot for large r, as described by Flynn et al. [1996]

has been tested in Chapter 4, however, this model entails the fact that the halo pressure

will not converge. This means first of all that shock fronts could theoretically proceed

to infinity as due to the resistant pressure decreasing strongly with r they will accelerate

forever. Furthermore, the density would have to drop adequately in order to maintain a

constant temperature all over the halo, and would soon reach unreasonable values below

the cosmic background (compare Figure 6.2). We hence adapted the NFW potential to

overcome the described problems, and to achieve a more realistic setup than the one

used in Chapter 5.

6.2.2 Disc setup

Several approaches to establish a stable disc-halo system have been tested previously.

Another detailed description for a possible setup can be found in Cooper et al. [2008]. In
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Table 6.2: External bulge and disc potential

parameters for simulation set 3 (ST, KE, TE,

B and NC runs).

Component Parameter Value

Bulge rC1
1.35 kpc

MC1
1.11× 109 M⊙

rC2
0.21 kpc

MC2
5.92× 109 M⊙

Disc b 0.15 kpc

a1 2.905 kpc

MD1
2.442× 1010 M⊙

a2 8.715 kpc

MD2
−1.073× 1010 M⊙

a3 17.43 kpc

MD3
1.221× 109 M⊙

rs,D 2.05 kpc
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general, the following issues have to be kept in mind: Firstly, we want the gaseous disc to

be rotationally supported (i.e. in hydrodynamic equilibrium), whereas the halo shall be

pressure-supported (i.e. in hydrostatic equilibrium), which inevitably causes friction and

shear effects in the transition zone. This problem will be mitigated automatically while

we allow the system to settle into an overall equilibrium within a few Myr. As stated

above in eq. (2.59), the total potential is built up of three components, whereas the disc

component Φdisc(r, θ) is a combined form of a Miyamoto-Nagai potential [Miyamoto and

Nagai, 1975]:

Φdisc = − GMD1
√

R2 +
(

a1 +
√
z2 + b2

)2

− GMD2
√

R2 +
(

a2 +
√
z2 + b2

)2

− GMD3
√

R2 +
(

a3 +
√
z2 + b2

)2
. (6.12)

The bulge component Φcent(r) is basically a central potential,

Φcent = − GMC1
√

r2 + r2C1

− GMC2
√

r2 + r2C2

. (6.13)

We have scaled down the mass-related parameters from Flynn et al. [1996] (MD1
, MD2

,

MD3
, MC1

and MC2
) by a factor of 0.37 to match the residual disc mass (gas and stars)

of 2.1× 1010 M⊙. The length-related sizes (a1, a2, a3, b, rC1
and rC2

) in the description

by Flynn et al. [1996] have been scaled down by a factor of 0.5 for our purpose, leaving

our disc at a scale radius of 2.05 kpc. An overview of all the values related to the bulge

and disc potentials is given in Table 6.2. For comparison, a typical LBG is assumed to

have comparatively small size, and a mass probably an order of magnitude smaller (a

few 1010M⊙) than the more massive SINS galaxies [Genzel et al., 2008]. They form stars

dominantly in a steady mode at a range of star formation rates, tens of solar masses per

year not being uncommon [Pettini et al., 2001, Shapley et al., 2003].

We assume here that 50 per cent of the disc mass are already locked inside its stars,

which gives us some freedom of choice for the gas density distribution, since that the

disc potential is made up by the combined mass of gas and stars. We use an exponential

(in radius) gas density profile with a cutoff at r = 5kpc, that is vertically nonstratified.

The disc density is known from equation 3.14, whereas ρdisc,0 = 1.0 · 10−22 g cm−3. The

disc has a vertical height of 500 pc, and thus the total gas mass is 1.1 × 1010 M⊙, i.e.
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Figure 6.2: Hydrostatic gas mass density in g cm−3 for three NFW haloes and

two DM haloes with a ln (r)-profile as is described in Flynn et al. [1996], at dif-

ferent equilibrium temperatures, respectively. For the NFW profiles, density and

therefore pressure converge against the cosmic background value quickly for every

temperature, whereas this is not the case for the ln (r)-profiles. The polar angle

for all curves is θ = π.

about 50 per cent of the mass implied by the disc potential. The disc gas pressure

follows from the ideal gas equation (2.61), just as for the halo gas pressure. In Figure

6.3, the resulting density for our disc-halo system is shown as a contour plot; the initial

and boundary conditions are further explained above. This setup condition applies to

the complete set of simulations presented in this chapter (see Table 6.1).

6.3 Pressure-driven winds

We begin with an investigation of how the method of SN energy injection affects the

emerging wind. For this purpose, we have run a set of simulations with ζ0 = 100. One

simulation uses the Sedov-Taylor blast wave model, and hence both kinetic and thermal

energy are injected with every SN event (denoted ’ST100’). In addition, two models were

calculated, injecting a purely thermal energy fraction of 40 per cent (denoted ’TE0.4’),

and 60 per cent (’TE0.6’) of the total SN energy yield, respectively, and another one,

injecting a purely kinetic energy fraction of 40 per cent (’KE0.4’). The characteristics

of the pressure-driven and the kinetic energy driven cases are discussed in the first two

subsections, respectively.

The third subsection includes an analysis of the contribution of buoyancy to the wind
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Figure 6.3: Initial mass density in g cm−3 at zero time. All simulations described

in Chapter 6 are based on this setup. The disc is set up exponentially with

ρdisc(r) ∝ exp (−r), whereas the halo gas features an exponential-like distribution

of ρb(r, θ) ∝ exp (−Φ(r, θ)).Note the slight deviation from spherical symmetry of the

halo density due to the gravitational potential of the disc component.

energy in ST100, which will be compared to our theoretical consideration in section 2.2.

All the runs presented in subsections 4.1, 4.2 and 4.3 include a cooling halo. Since

halo pressure is reduced by cooling, winds will arise comparatively easily in this case,

allowing for more prominent effects more suitable for later comparison. Subsection

4.4 investigates the question how the sizes of SN bubbles can affect the strength of

galactic winds; for this we have run another set of three simulations featuring Sedov-

Taylor blast wave models and different event sizes each. In contrast to the previous

runs, the runs in subsection 4.4 are each performed twice, with both, a cooling and a

non-cooling halo, respectively, to investigate the limiting cases of the possible effects of

varying metallicities in such objects. We show that the different halo pressures have a

significant effect on the wind. All of our results herein will then be compared in the

final subsection.

In Figure 6.4 we show the mass density distribution of simulation ST100 at times of 10,

20, 40, 60, 120 and 180Myr. We can clearly discern individual superbubbles expanding

already at 10Myr beyond a height of 1 kpc above and below the disc. These bubbles

keep expanding, driven by their overpressure against the radially quickly declining halo

pressure. At 40Myr the superbubbles unite creating a low density funnel close to the
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Figure 6.4: Top: Simulation ST100 with each SN releasing 4.0× 1050 erg as kinetic,

and 6.0×1050 erg as thermal energy. Note that the time span between two snapshots

is not always the same; the elapsed time is denoted above each snapshot. Shown is

the logarithm of the density in meridional midplanes. Bottom: Simulation NC100

with a non-cooling halo; see subsection 4.4. for details
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axis of symmetry. Since the gas inside this structure provides less resistance to subse-

quently escaping superbubbles than the rest of the halo region, material from succeeding

bubbles will continue to flow at ease through the funnel. The latter is surrounded by

a conical structure of notably denser material which was originally entrained from the

dense disc by outgoing shock fronts and hence continues to move outwards. Over time,

enormous amounts of SN energy are fed into the disc, which in turn becomes extremely

turbulent: large portions of gas are torn out of the disc midplane, partially due to en-

trainment by the wind, but eventually fall back into the former. The shape of the disc

gets highly irregular and clumpy but the disc remains overall intact.

Since we are dealing with a rather massive system, it might seem likely, regarding the

studies by Dubois and Teyssier [2008], that outflows appear preferably in the form of

galactic fountains. These would exhibit velocities below the local sound speed cs, notably

slower than the supersonic galactic winds. Regarding their morphology, convections

would be discernable by a widely spherical shell of compressed halo gas all around the

overall turbulent disc, whereas the wind emerges mainly from the central part of the

disc, showing a conical outflow structure. Despite the fact that there are traces of

outflowing material in the outer disc parts in Figure 6.4, the conus structure is still

the more dominant. It can be further made sure by measuring the outflow velocity in

units of cs, that large portions of the outflowing material is well beyond sound speed.

Figure 6.5 shows the outflow velocities with respect to the local sound speed at 100Myr;

the velocities are capped at 0 and 10 cs. We have hence made sure that the presented

model indeed produces a true galactic wind.

We make here the usual distinction [compare e.g. Dubois and Teyssier, 2008] between

the two common types of outflow solutions: A wind is defined to be supersonic with

respect to its internal sound speed. A fountain, on the other hand, is subsonic. Galactic

fountains are therefore much more susceptible to the Kelvin-Helmholtz instability and

usually turbulent. Both types of solutions may in principal be bound to the galaxy or

reach escape velocity. The smaller bulk velocity of the fountain solution usually prevents

it from escaping the galaxy and the flow becomes convective, lead by a roughly spherical

weak shock or sound wave around the whole system. In contrast, the bulk velocities in

the wind gas may easily reach escape velocity. Due to the geometrical constraint from

the galactic gas disc, the outflow becomes conical. Figures 6.4 and 6.5 demonstrate that

the outflow which has emerged in run ST100 has developed all the usual characteristics

for a wind solution. The escape velocity at 10 kpc distance from the disc amounts to

vesc = 426 km s−1, which is well below the typical wind velocities close to 103 km s−1.

The difference to Dubois and Teyssier [2008] is mainly the size of the disc. Dubois
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Figure 6.5: Radial velocity of outflowing gas regions in units of their respective

local sound speed cs. The velocities are capped at 0 cs and 10 cs.

and Teyssier [2008] have chosen a much larger disc and therefore might not reach the

required SN density to drive the outflow.

6.3.1 Mass outflow

For a quantitative analysis of our models, we will calculate the net mass flux across a

spherical shell of inner radius ri and outer radius ro first, averaged over time. We start

with

lM(r, t) = kφ
1

∆r

0.92π
∫

0.04π

0.04π
∫

−0.04π

ro
∫

ri

ρ(r, θ, φ, t) vr(r, θ, φ, t) dθ dφ r
2 sinθ dr, (6.14)

which is the net mass flux at any point t in time for a spherical layer of grid cells at

a given radius r. The factor kφ = 25 is a correction term which accounts for the fact

that our simulation box covers only 1/25 of the total φ range. Due to the box limits

in θ range, a part of the wind at the poles is neglected. Due to the small surface area,

this error is not significant. The average mass flux for all layers at radii ri < r < ro is

determined every 1 Myr, and then averaged over 10 Myr, yielding the total net mass
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Figure 6.6: Top: Mass flux rates through different shells of respective thickness

1 kpc. Bottom: Efficiency of mass output, defined as the ratio of outflowing mass

Meject to star-producing mass MSF. The dashed black line marks unity.

flux LM = 〈lM(r, t)〉. Figure 6.6 shows mass flux rates from 0-200 Myr for run ST100

across shells of respective thickness of ∆r = 1kpc for various shell positions. In the

innermost shells, winds will show up earlier and stronger, however, a large fraction of

the outflowing mass in these inner shells is likely to represent entrained disc material.

This material might, in some cases, fall back soon after its ejection from the host disc,

and actually not contribute to the mass carried away by the wind.

6.3.2 Energy outflow

To obtain the net energy flux, we assume the same shells as before, however, the energy

flux for a given radius at any point in time comprises both a kinetic and a thermal

energy component of the wind, and can hence be written as
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Figure 6.7: Analysis of simulation ST100. Top: Energy flux rates through differ-

ent shells of respective thickness 1 kpc. Bottom: Efficiency of energy conversion,

defined as the ratio of thermal plus kinetic energy carried by the wind Eout to bulk

energy released by supernovae ESN.

lE(r, t) = kφ
1

∆r

0.92π
∫

0.04π

0.04π
∫

−0.04π

ro
∫

ri

(

ρ(r, θ, φ, t) v(r, θ, φ, t)2

2
+

p(r, θ, φ, t)

γ − 1

)

· vr (r, θ, φ, t) dθ dφ r2 sinθ dr. (6.15)

The mean value for the net energy flux is averaged in the same way as the net mass flux,

namely LE = 〈lE(r, t)〉. Again, the energy flux rates displayed in Figure 6.7 represent

different shells of 1 kpc thickness each, for different shell positions.

Comparing the respective shells of measurement in Figures 6.6 and 6.7, we can clearly

see a convergence of the graphs with increasing shell radius. Measurements closer than

7 kpc exhibit more pronounced extrema, and, in case of strong turbulent feedback or
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irregularities in the disc, may be prone to notable perturbations arising from the disc.

If too close to the box boundary at 10.2 kpc, interactions with the boundary itself might

distort the actual result in a few cases. Therefore, we choose the range in between

8 kpc < r < 9 kpc as the most reliable one.

All plots exhibit one more or less strong peak, which is the first shock front clearing

the path for the wind yet to come. Any further peaks are a result of local and tem-

poral concentrations of SN events; yet these anomalies will be mitigated as the energy

outflow will stabilise over time. The basic level of energy carried by the wind is several

1047 erg s−1. So, with an average input of some 1050 erg s−1 in our models, we can define

a wind efficiency as the ratio of wind energy to injected energy. The latter is stable on

a level around 10−2.5, as is shown in the lower panel in Figure 6.7.

6.4 Kinetic energy-driven winds

In order to compare directly the respective importance of the thermal and kinetic forms

of energy injection, we have performed three simulations, where we inject only thermal

energy or only kinetic energy (Figure 6.8). Note that these simulations permit cooling

in the halo, which subsequently reduces the environment pressure the wind has to over-

come. The cooling halo is particularly necessary for the sake of the comparison in this

section; without it a wind may not be strong enough to leave the disc at all in some of

the presented cases. In run TE0.6, we inject the thermal energy component, only, using

the standard fraction of 0.6 × 1051 erg per injected SN. This run has a slightly slower

wind start, but later on is statistically indistinguishable from run ST100 regarding mass

and energy outflow rates (Figures 6.9 and 6.10). Using only the 40 per cent kinetic en-

ergy (KE0.4), the wind is much weaker: It has now a much harder time to get out of the

disc. The part in the hemisphere with negative z values is even dragged back by the ram

pressure of the infalling halo (120 Myr). The wind stalls completely between 110 and

120 Myr (compare Figures 6.9 and 6.10). These results seem to indicate that the thermal

energy part is the more important one for wind driving. We have also performed a run

(TE0.4) with the thermal energy injection being reduced to the level of KE0.4. Here,

the wind is also noticeably weaker, and the downwards going bubble also comes back.

The statistics indicate a stronger outflow for TE0.4. However, the system is evidently

just around the threshold, where it can drive a wind at all. Therefore, small changes

might affect the result strongly. Remembering that our numerical scheme conserves the

thermal energy better than the kinetic one (compare Section 3.5), we conclude that the

differences between KE0.4 and TE0.4 are not significant.
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Figure 6.8: Top: Simulation KE0.4 with each SN releasing 4.0× 1050 erg as kinetic

energy only. Middle: Simulation TE0.6 with each SN releasing 6.0 × 1050 erg as

thermal energy only. Bottom: Simulation TE0.4 with each SN releasing 4.0 ×
1050 erg as thermal energy only. Snapshot times are identical to Figure 6.4
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Figure 6.9: Absolute (top) and relative (bottom) mass flux rates, for different types

and quantities of feedback energy. The solid black line represents model ST100

with a normal Sedov-Taylor energy distribution for comparison. The dashed blue,

dash-dotted red and triple-dot-dashed purple line are the models KE0.4, TE0.4

and TE0.6, respectively.
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Figure 6.10: Absolute (top) and relative (bottom) energy flux rates, for different

types and quantities of feedback energy. The linestyles and colours are the same

as in Figure 6.9.
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6.5 Buoyancy

We have shown in Subsection 6.1.1 above that SN bubbles in reality would typically

exhibit entropy index values of order 10 keV cm2. For an event releasing 6 · 1052 erg
in thermal energy, i.e. 100 SNe, the entropy index from equation (6.2) calculates to

1.7 ·108 keV cm2. Mixing reduces this value quickly to about 104−105 keV cm2 (compare

Figure 6.11), but this is still a significant number. This enormous value dramatically

increases the likelihood of buoyant superbubbles contributing notably to the wind in

our models. We shall hence have a closer look at the energy which is released only by

the ascendance of a SN bubble.

The gravitational acceleration is generally given by

g =
GM

R2
, (6.16)

with M = 7.7 · 109 M⊙ being the total baryonic and dark matter mass and 3.3 kpc be-

ing the disc radius, which yields g = 10−8 cm s−2. If the gas density in the bubble is

much smaller than the surrounding it will be accelerated upwards with g. Allowing a

bubble to ascend through the halo for 79Myr would hence lead to an ascension height

of 10 kpc, at which the bubble would have obtained a velocity of 249 km s−1. Since the

winds in run ST will quickly reach peak velocities well above 1000 km s−1, this would be

a contribution of less than about 6 per cent to the total outflow energy by buoyancy,

regardless of ongoing mixing processes.

The entropy index for run ST100 is shown in the upper box in Figure 6.11, after 100Myr

runtime. Since we do not allow radiative cooling below 104 K, there is only one way

for the gas to reach lower temperatures than this, which is adiabatic expansion. The

latter occurs when material is entrained by the wind from the disc and begins forming

filamentary structures, assembled in a cone-shape around the main wind channel. The

disc and original halo gas is both smeared out to some extent in the course of the

simulation, whereas the white shape represents the system at 1Myr, just before the

onset of SN feedback. The resulting SN bubbles form at the highest temperatures,

whereas during bubble expansion the entropy index S stays constant. Any bubble would

thus follow a horizontal path toward the left-hand side of the plot until the point when

mixing processes start playing a role, eventually dissolving the bubble. If we compare

the entropy index of the original halo at 1Myr to the bubble region, we find that a

large number of bubbles could theoretically ascend above the highest halo regions by

buoyancy, and thus contribute to the arising wind. However, the energy released that
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Figure 6.11: Entropy against temperature after 100Myr, for different regions of

the disc-halo system. Shown is the logarithmic volume at given values for the log-

arithms of temperature and entropy index. Light blue means high, and dark blue

means low. Filaments (F) and disc (D) can be clearly discerned. The transition

between halo (H) and bubbles/wind (BW) is fluent, indicated by a dashed line.

The white shape is the initial disc-halo distribution just prior to the first SN.

way contributes only a small part to the total wind energy, which has been shown above.

We have run a comparison simulation (B100) with a ten times higher density inside the

bubbles upon injection, with very similar results, showing that our results are insensitive

to the exact choice of this parameter.

6.6 Bubble size

The last set of simulations presented in this study features a variation of the event size

ζ0 introduced above in Section 3.4.2. The event size specifies the number of SNe com-

prised in one single bubble. On average, for 100M⊙ of newly formed stars, we inject

one SN and a gas mass return through stellar winds and SN ejecta of 25M⊙. This in

turn requires a minimum available mass of 7.5× 104 M⊙ per cell for ζ0 = 100. However,

there is a chance for a mass deficit to occur, typically in the outmost parts of the disc

where the defined minimum density of 10−24 g cm3 is just reached, or in cells close to

the inner radial boundary which exhibit small absolute angular diameters. On the other

hand, the average cell mass will be 4.4 × 104 M⊙, which is well above the requirement

for a 200-SN event. The mass deficit is not a severe issue, since in reality, the mass

would come from neighbouring cells, and because the global error on the mass budget

is small, no significant effect on the dynamics is expected. Locally, one might expect
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Figure 6.12: Total number of stars formed n⋆ for different respective amounts of

SNe per bubble ζ0, indicated in the inset legend.

that we might artificially somewhat damp the kinematics in the large bubble simulations

because of the slightly higher inertia in these runs. Yet, as we show below, we find that

large bubble simulations exhibit the strongest winds.

Note that in some of the following simulations (NC20, NC50, NC100 and NC200) the

threshold above which we inhibit radiative cooling is reduced below the halo equilibrium

temperature of 600,000 K. We include these non-cooling simulations in addition to the

ones with cooling at solar metallicity, in order to investigate possible effects of metallic-

ity: For metal poor gas halos, the cooling time is prolonged. Such galaxies will therefore

likely have a hydrostatic halo as we describe it. For increasing metallicity, the thermal

pressure will drop due to cooling but at the same time ram pressure due to the inflow-

ing gas will increase [compare Dubois and Teyssier, 2008]. With the approximations

of solar metallicity cooling (ST) and non-cooling (NC) haloes, we try to capture the

extreme cases, keeping in mind that a full parameter study in a Cosmological setup is

clearly beyond the scope of this work. The values chosen for ζ0 in these simulations are

20, 50, 100 and 200 SNe, respectively (see Table 6.1). In the following, the total SFR,

the onset of the wind and its temporal development will be of particular interest. We

will further investigate the mass and energy efficiencies in the same manner as above.

It may seem reasonable to assume that, since smaller bubbles are situated much closer

to each other than large ones, dense material in between will be further compressed

until star formation sets in, thus providing a positive feedback to the SFR. Yet, large

bubbles may proof more powerful when it comes to triggering the wind, and thus we

could find that a larger ζ0, though providing little less energy input, results in a slightly

more efficient wind.
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6.6.1 Star formation

A look at Figure 6.12 immediately reveals that the cumulative SFR for different bubble

sizes undergoes little change within 8 per cent, until just before 50Myr. This difference

grows, being already around 24 per cent at 200Myr. An explanation for this could be

that large bubbles result in a violent blow-away of large gas portions, whereas small

bubbles, due to their numerous occurrence, smear out the disc material over a compar-

atively large volume, reducing the chances for the gas to pile up in high amounts on any

single spot. Both effects can result in a visible reduction of star formation, and hence

the optimum range for star formation comes to lie in between 50 and 100 SNe per event.

In Figure 6.13 we plotted the mass-weighted height hM of the gas above the disc mid-

plane, which calculates as

hM =

∫

r |cos θ| dm
∫

dm
. (6.17)

The resulting value for hM indicates the average height of all gas portions in kpc above

the disc plane at any given time. We find that for NC200 hM is significantly larger as for

NC100, but only between 40 and 100Myr, while NC20 and NC50 show comparatively

little difference. NC100 and NC20 however increase strongly in the last 30Myr. Increas-

ing values mean that during this time much of the gas is torn out of the disc forming

filaments, which constitute large quantities of gas unavailable for star formation. But

if this were to be the reason for the lower SFR in NC200, we would expect the NC200

graph to dominate clearly from about 50Myr onwards. This possibility can hence be

excluded.

In contrast, small bubbles of 20 SNe should have a smoothing effect on the overall density

profile of the disc. The number of columns with respect to their density is visualised in

Figure 6.14, whereas the total column number nc includes all columns within r < 5 kpc

and is integrated over the total simulated time span of 200Myr. The curve for NC20

should exhibit more moderate values than its NC200 counterpart, whereas extreme val-

ues below 10M⊙ pc−2 and above about 60M⊙ pc−2 should be less present in the former.

Columns of high density contribute most of all to the global SFR, and should be most

present in the NC50 and NC100 curves. We find however, that neither of the four curves

matches any of the expectations. Therefore, we can also exclude smoothening effects

inside the disc from large numbers of small bubbles to be of notable effect to the SFR.

This means that the SFRs in our simulations are set by a more complex interplay of

processes.
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Figure 6.13: Mass-weighted height hM of gas above the disc midplane.

Figure 6.14: Surface density histograms for simulations NC20 - NC200, as indi-

cated in the legend. We only take into account the region at radii r < 5 kpc and

sum up the columns of all the 200 snapshots of each simulation over the entire

simulation time of 200Myr.
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6.6.2 Mass and energy flux

Figures 6.15 and 6.16 show the absolute and relative mass flux, and the absolute and

relative energy flux, respectively, for the different bubble sizes. It has to be borne in

mind, that after 100Myr the differences in the SFR become somewhat stronger (compare

Section 7.1 below). There is no doubt that the mass flow curve for NC200 starts earliest,

and much higher than the others. Early starting curves are a clear indicator that the

wind developed fast; in the case of NC200 it takes 20Myr for the wind to reach the

radius of measurement at 8 kpc, giving it an average speed of nearly 400 km s−1. Curves

starting late suggest that the wind is setting in at a later point in time, but could also

indicate a slower wind. The former case however applies to our simulations. The wind

in NC100 starts early and still carries comparatively large mass. Of the two remaining

ones, NC50 exhibits a stronger wind at a late start, whereas NC20 starts with little

mass at an earlier time. When looking at Figure 6.16, it becomes more obvious, that

large SN bubbles show a tendency to start blowing a wind in a powerful way. The

NC200 and ST100 energy curves stay roughly constant in time, whereas NC20 exhibits

a more chaotic behaviour after the onset of the wind. While the order is not strictly

maintained throughout the simulation time, there is a clear general trend for larger

bubbles to produce higher mass outflow rates. This is also generally confirmed from the

cumulative numbers (Table 6.3): The two large superbubble simulations have a mass

outflow rate which exceeds the one of the two small superbubble simulations by about

an order of magnitude. Run NC200 has formed 11 per cent less stars than run NC100,

and still ejects 34 per cent more mass. Only for run NC 50, we find a 21 per cent smaller

outflow rate in comparison to NC20, while the star formation rate is 24 per cent higher.

The trend is even more evident in the cumulative energy outflow rate (also in Table 6.3):

For all the NC simulations, they increase monotonically with superbubble size, even if

normalised to the star formation rate.

6.6.3 Halo pressure

There is however one more circumstance to be taken into account, which is the thermally

pressurized halo. In the NC runs, this pressure can strongly inhibit the onset of a

continuous galactic wind, as can be seen in Figure 6.4. In contrast to NC100, the ST100

run shows a clearly steady outflow, as the wind therein does not have to overcome such

a strong environmental pressure from the halo. In order to study this effect more closely,

we varied the bubble size for the cooling halo model to 20, 50 and 200 SNe, respectively.



6.6 Bubble size 115

Figure 6.15: Mass flux rates in absolute (upper) and relative (lower) numbers for

all four NC runs and ST100 (black dotted line). The relative values are normalized

to the total mass of stars formed within the respective time.
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Figure 6.16: Energy flux rates in absolute (upper) and relative (lower) numbers for

all four NC runs and ST100 (black dotted line). The relative values are normalized

to the total energy release from SNe within the respective time.
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Table 6.3: Cumulative mass and energy flux values after 200Myr

simulation time. The four bottom lines show the values for cool-

ing halo models (ST) relative to non-cooling halo models (NC).

Run Cumulative mass flux Cumulative energy flux

ST20 2.7× 109 M⊙ 9.3× 1056 erg

ST50 3.5× 108 M⊙ 1.1× 1057 erg

ST100 1.0× 108 M⊙ 5.7× 1055 erg

ST200 1.4× 109 M⊙ 3.5× 1056 erg

NC20 7.7× 107 M⊙ 6.3× 1054 erg

NC50 6.1× 107 M⊙ 7.2× 1055 erg

NC100 6.2× 108 M⊙ 5.2× 1056 erg

NC200 8.3× 108 M⊙ 6.3× 1056 erg

ST20/NC20 35.1 147.6

ST50/NC50 5.7 15.3

ST100/NC100 0.16 0.11

ST200/NC200 1.7 0.56
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In Table 6.3 the complete set of runs ST20, ST50, ST100 and ST200 is compared to their

respective NC counterparts. The displayed values are the cumulative mass and energy

flux rates until 200Myr, in absolute numbers,
∫ 200Myr

0
LM(t) dt and

∫ 200Myr

0
LE(t) dt,

respectively. For each bubble size, the flux value of the respective ST run is normalized

by the value for the respective NC run. It is obvious that for the smaller bubble sizes,

ζ0 = 20 and ζ0 = 50, the outflow is stronger in the absence of thermal halo pressure.

Moreover, ST20 and ST50 feature one major outburst each, where massive a local

concentration of feedback energy leads to the ejection of a large share of hot gas from

the disc. However, if ζ0 = 200, a steadily blowing wind arises also for the thermally

pressurized halo; we find both mass and energy outflow rates for ST200 and NC200

to range in the same orders of magnitude, respectively. ζ0 = 100 represents a special

case, where an exceptionally large filament is torn out of the disc after 170Myr, which

accounts for the bulk of mass and energy (also compare Figure 6.17). If this phenomenon

is neglected, the flux values for ST100 and NC 100 would be of comparable magnitude.

Figure 6.17 shows one snapshot from all eight runs at the same time of 200Myr. We

find for ζ0 = 20 that in both cases the small bubble size only triggers a weak wind.

In NC20, filaments bordering the upper and lower wind conus are absent, indicating

that the halo pressure has already begun to force the wind conus back into the disc.

In ST20 we find the wind to be asymmetric, being at least stable on one side of the

disc. The same applies to ST50, where the wind is also dominant on one disc side only.

NC50 in contrast developed a biconically stable wind, however, the conus is already in

the process of being crushed. The wind in NC100 has ceased entirely; instead we can

see the disc being just a few Myr before complete disruption - which also explains the

enormous mass and energy outflow rates towards the end of NC100. ST100 on the other

hand exhibits a clear biconical wind structure, with a wind steadily blowing in both

directions. Stable winds also occur in NC200 and ST200. This supports our assumption

that large superbubbles generally seem to boost the overall strength and steadiness of

the wind. Furthermore it appears that for smaller bubbles the environment pressure be-

comes important. If the halo is thermally pressurized, winds arise but cannot overcome

the halo pressure in the long term. In case of a cool, less pressurizes halo, winds are on

the brink of developing towards a stable, steady state; asymmetric developments with

at least one of two coni being stable are not unlikely.

In summary, mass and energy outflow rates in the NC runs consistently show the same

trend: if the event size ζ0 is varied, the outflow rates for large ζ0’s will tend to start

comparatively high, and change barely over time. Small ζ0’s will cause the wind to set
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Figure 6.17: Top row: Simulation set NC at t = 200Myr for ζ0 =20, 50, 100 and

200, from left to right respectively. Bottom row: Simulation set ST at t = 200Myr

for the corresponding values of ζ0.
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in less forcefully, and, as is the case with NC20, undergo occasional drops in strength.

The efficiency of mass ejection in our NC models will mostly be between ∼ 10−2 and

unity. The efficiency of feedback energy conversion exhibits a convergence for most runs

against ∼ 10−3, while values of ∼ 10−2 are still common, and ∼ 10−1 is already rare.

For the ST runs, no clear trend can be discerned. A high halo pressure efficiently pushes

smaller bubbles back into the disc, but low halo pressure enables bubbles of all event sizes

to enter the halo overpressured and keep expanding. Therefore, the outflow properties

do not depend systematically on the bubble size in the latter case. Instead, they tend

to be dominated by single events, like the high concentration of SN bubbles leading to

a violent ejection of large gas masses in ST20 and ST50.

6.7 Implications

We study four potentially important factors for wind driving, namely the thermal energy

contribution, the kinetic energy contribution, buoyancy of SN bubbles and the local

concentration of SNe which determines pressure and size of the superbubbles. It could

be shown that the main launching mechanism is the thermal energy contribution and the

amount of pressure it provides to a bubble. In consequence, we consider a multiphase

ISM to be essential for the numerical simulation of galactic winds. The feedback of

thermal energy alone is capable of converting up to about a factor of 10−2 times the

available energy into the outflow. In comparison, kinetic energy can increase the strength

of a wind but is very unlikely to be capable of launching a wind by itself. Buoyancy

of superbubbles provides only around one per cent of the energy carried by the wind,

which alone is insufficient to set up a wind as well. The wind strength grows with the

superbubble size, and is significantly affected by the halo pressure.
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Discussion

7.1 Methodic accuracy

We have produced successful models of LBG’s launching galactic outflows, in order to

shed some light onto the exact mechanisms responsible for the onset of a galactic wind.

These models feature a realistic galaxy setup with superbubble events, similar to the

setup used by Dubois and Teyssier [2008]. Our equilibrium setup allows us to investigate

the reaction of the system to systematic changes of parameters like the halo pressure or

the superbubble size. Our methods described in Section 3 comprise the most important

physics, however, some simplifications had to be made which require further discussion.

The star formation in our last set of models is determined by a local Kennicutt-Schmidt

law, and converges with increasing resolution. It is also sensitive to local events, such

as material ejections and the bubble size. The latter is clearly a significant effect: In

our resolution study (Figure 6.1), we find that the number of stars formed after 200Myr

agrees within 26 per cent. However, there is a convergence for resolutions finer than 36

pc. If we disregard the 65 pc resolution, the deviation already shrinks to nine per cent.

Varying the bubble size yields a change in star formation of about 24 per cent. Larger

bubble size leads to stronger star formation, yet very large bubbles seem to lead to such

a strong outflow that the star formation gets weaker again. We believe that this feature

of the model is realistic.

We have also investigated the dependence of the outflow rates on resolution. Apart from
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the 65 pc case (R65), which also shows a stronger deviation in the star formation rate,

there is no strong or systematic deviation among all the runs with better resolution.

7.2 Disc and halo mass

The disc mass in our simulations has been varied over two orders of magnitude, whereas

all of our discs are very gas-rich, with less than 50 per cent of their respective masses

being locked in stars. We find a systematic behaviour in the evolution of galactic winds,

which are more likely to emerge from low-mass discs. With increasing disc mass, winds

become weaker and less continuous.

Regarding the halo potential, there are some trends which can be lined out: A steep

potential slope close to the centre can encumber the development of a wind, as for

instance in run F-ST which features a logarithmic potential curve. However, if the

potential curve converges for large radii, outgoing bubbles face a counter-pressure nearly

constant in radius and might even collapse back onto the disc, as is the case e.g. in

NC100, where thermal halo pressure is strong due to the NFW potential shape and also

to a lack of cooling. This suggests that a logarithmic potential allows for winds to blow

relatively strong once they manage to escape the disc, whereas a NFW potential makes

it relatively easy for the wind to escape the disc, but opposes more resistance at high

radii.

Another quantity to be taken into account is the baryonic halo component. If the

baryonic density is low, cooling time and hence thermal pressure will be high, which is

a suppressing factor to the wind. The ST runs, where the halo is relatively dense and

quickly cooling, thermal pressure is reduced, which increases the chances for a strong

continuous wind. However, ST20 and ST50 with their low SN event sizes do not show

continuous winds, which might also be contributed to the disc mass being ten times as

massive as e.g. in ED-3 or ED-4. This hints to a more complex interplay of disc mass

and halo mass, which ultimately determines the development of a wind.

7.3 Supernova injection mechanisms

Two different injection mechanisms for SNe have been implemented and investigated

in the course of this work. The first mechanism is based on the local Jeans mass and

mass density. We consider this approach to be physically motivated by the fact that

stars form in clouds that are dense compared to their surroundings. These clouds are
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often shaped by feedback processes like e.g. stellar winds and turbulence. It is generally

realistic to implement SN injection based on local criteria since star formation is a local

phenomenon. However, our resolution study has shown that the global star formation

rate changes significantly with resolution, which points to more complex physical pro-

cesses our implementation can only reproduce within a narrow resolution range.

The second mechanism triggers SN bubbles randomly, in accordance to the Kennicutt-

Schmidt law for star formation (compare equation (3.8)), which is correlated to the

column density Σ, but neglects the volume density of the constituent cells within the

column. Local phenomena are hence less well represented in this implementation, how-

ever, it is in better accordance to observations of star-forming disc galaxies than the

local, Jeans mass-based prescription. The global SFR in the model discs could be shown

to converge with increasing resolution. Increasing SN probability with the local mass

density could include local physics in the second mechanism. In this case more bubbles

would occur deeper within the disc and would thus have a harder time reaching the halo.

The net effect would be an overall mitigation of the wind by an unknown factor, which

might explain the weakness of the wind in simulations using local SF recipes (F-ST and

F-KE). In consequence, energy would be converted even less efficient.

In the second approach, we further had to implement a lower volume density threshold

for cells to count as part of the disc and to amount to the surface density of their spe-

cific column. Note that the value used for our models, 2× 10−24 g cm−3, is just a crude

estimate for the lowest density regions found in the 104 K gas phase of the ISM, and

thus allows for some variation. For instance, a lower threshold will open up a regime

of rarefied cells surrounding the disc as is currently defined. This will have an effect on

the distribution of the SN events, allowing for a bubble to blow out into the halo with

less resistance. Though, the change in total will likely be of little effect regarding the

wind strength - note that such rarefied cells will likely contain just around 100M⊙. This

would definitely call for the modification of our probability function, which, if applied,

would make an event in these cells extremely unlikely.

7.4 Wind drivers

Our work concentrates on the mechanisms behind galactic outflows. We could show

that buoyancy can drive bubbles out of the disc, but by itself is not powerful enough
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to trigger fast-flowing galactic winds without any supplementary yield of energy, even

not in our present simulations, which if anything overestimate buoyancy. We find that

the thermal energy component by itself is sufficient to drive a wind. Whether or not we

add the kinetic energy does not significantly change the result. We find a much weaker

wind if we use the kinetic energy component, only. Even in simulations with the same

overall energy injection, but once thermally and once kinetically injected, we find that

the thermally driven wind is much stronger. This has been tested for two different se-

tups, whereas the results are consistent for both. There is a good reason why we should

expect such a behaviour: A pressure supported bubble will simply expand into the di-

rection of the strongest pressure decline, i.e. radially outward, once the halo is reached.

Gas which just has its kinetic energy may not accelerate as efficiently by this pressure

gradient. On the contrary the pressure force works the other way, because the bubble

is under-pressured much faster. Moreover, for the non-cooling halo, which maintains a

high termal pressure and thus oppresses wind formation compared to a cooling halo, we

find the wind energy to vary by a factor of 100 for different event sizes (Figure 6.16 and

Table 6.3). An event size of 200 SNe (NC200) produces a strong wind, and an event size

of 100 SNe (NC100) a weak one, just strong enough to enter the thermally pressured

halo. These two orders of magnitude make the difference between existence and absence

of a wind. For the different feedback energy types however, the wind energy already

differs by 106 (compare Figure 6.10), with the wind set up by purely kinetic energy (KE-

0.4) temporarily coming to a complete breakdown. However, because thermal energy

is conserved better by our numerics, we may underestimate the effects of the kinetic

energy injection.

It should be pointed out here, that additional kinetic energy inside a disc might gener-

ally be provided e.g. by turbulence resulting from filamentary inflow or from magneto-

rotational instabilities. These, in addition to the SN feedback might make up for a

total kinetic energy supply high enough to trigger significant outflow. However, if we

are to deal with solely feedback-driven winds, excluding sources of energy not directly

related to SN feedback, our results indicate that thermal energy drives the outflow in

a more constant manner than kinetic energy, even if both are injected in equal quanti-

ties. Complete suppression of the wind, as is the case with kinetic energy in between

110− 170Myr does not occur with thermal energy-driving.

We have found for run KE0.4, that kinetic energy is converted highly inefficiently. Hence,

we could argue that, no matter what the actually provided amount of kinetic energy

is, the chances of resulting in a continuous outflow are generally small. Even stronger

kinetic energy feedback would then, more likely, result in partial or even complete dis-
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ruption of the gas disc as such, as is eventually the case with run F-KE. This becomes

clear when we take a look at the morphology of our model discs. Our simulations al-

ready show heavy distortions of the disc by the injected feedback energy, suggesting that

they are close to the kinetic energy level necessary for disruption. If then a comparable

amount of additional kinetic energy is spread equally inside the disc, we expect exactly

this to happen. Regarding the leading shock fronts in this case, if a shock front made

of compressed gas is allowed to expand only by its momentum initially received, it will

quickly slow down and collapse again due to over-expansion. To ensure further growth,

the shock front needs support by significant overpressure of the underlying rarefied re-

gion, which will be continuously provided by further superbubbles strong enough to

penetrate the halo. The cool, dense phase of the ISM is torn out of the disc to form the

wind’s filaments, which feature prominently in optical emission line studies. Whenever

a superbubble escapes from the disc, overlying and adjacent regions of disc material are

entrained by the fastly expanding bubble interior. Subsequent bubbles produce further

filaments, while those from previous bubbles still remain farther outside; eventually, the

inner filaments start to merge with the decelerating, outer ones to create the character-

istic biconical wind channel. Aside from that, this phase is required for star formation

in the first place, making it the key ingredient to trigger the feedback cycle. It therefore

seems reasonable to assume that the key to driving a wind lies within the existence of a

multiphase ISM, featuring a cool (< 10, 000K), dense phase as well as a hot (> 106 K),

rarefied phase at high pressure. Comparing to observations of wind galaxies in gen-

eral [e.g. Veilleux et al., 2005, Sharp and Bland-Hawthorn, 2010], the steady thermally

driven solutions which channel the energy efficiently into the wind and hence enable a

comparatively calm disc also seem to be preferred.

Furthermore, in Section 6.6 we have seen that the bubble size matters during the phase

where the wind is launched and breaching through the inner halo regions. In reality,

bubbles will not be all of the same size but rather occur in a wide range from single,

isolated SNe to a few hundred per bubble. Here, we show that the larger superbubbles

matter the most for galactic winds. However, for more realistic event size distributions

the mass and energy flux in the resulting wind might converge earlier and exhibit fewer

and smaller peaks. For the time being, we will leave this matter open for future inves-

tigation.

The bubble size has turned out to be relevant firstly for the initial shock wave, and sec-

ondly in the steady wind phase. Larger bubbles give a more powerful rise to the wind,

and will keep their strength at higher, roughly constant levels for a long time. In LBGs

which presumably blow winds continuously at a steady level, the bubble size could be
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important. Moreover, during the starburst phase, where the wind is often young and

after which star formation will decrease rapidly, the bubble size might play a role.

The thermal halo pressure determines whether or not a stable wind phase develops in

the first place. If the pressure is too high, the wind may very well be unable to proceed

too far from the disc. How far it can go depends on the bubble size. Winds set up

by small bubbles will stop early and in some cases collapse back onto the disc entirely,

whereas winds resulting from large superbubbles have a good chance of escaping the

halo no matter the halo pressure.

In observations of nearby galactic winds, one frequently finds energy efficiencies of order

ten per cent [Veilleux et al., 2005]. We find much less in our simulations. A similar

discrepancy is seen in the mass outflow rates. It is well possible that these are different

classes of objects. If the high wind efficiencies would also be confirmed for LBGs, it

might point to some effect we might still be missing in our simulations. A simplification

that might turn out to be crucial could be the superbubble injection. We neglect the

stellar winds of the massive stars, which are associated with star fomation regions, and

inject all the energy at once, whereas in a realistic star formation region, the energy

injection is extended over many tens of Myr and a complex function of time [e.g. Voss

et al., 2009]. This is clearly a non-negligible timescale in the context of a galactic wind.
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Conclusions and outlook

We have performed hydrodynamic simulations with the grid-based 3D code NIRVANA,

setting up a disc-halo system close to hydrodynamic equilibrium. Star formation has

been investigated in two different implementations: the first method makes use of a

Jeans mass criterion and the local mass density, and the number of SNe per event is de-

termined by cell mass, whereas the second is in agreement to a local Kennicutt-Schmidt

law, and star formation is followed by a preset number of instantly occurring SNe. The

feedback energy released this way eventually leads to a number of effects considered to

play a role in the development of galactic winds.

Chapters 4 and 5 dealt with the circumstances under which it becomes possible to launch

a powerful galactic wind at all, whereas in Chapter 6 a number of possible driving mech-

anism was investigated. In the first set of models we tested our local SN implementation

in a galaxy comparable in mass to the Milky Way, but more gas-rich. We found that

winds can emerge only in a narrow range of parameters for massive discs; further the

reproduction of a multiphase ISM proved to play a significant role. We modified the

local SN implementation in Chapter 5, and simultaneously decreased the disc mass to

109 M⊙ and altered the shape of the potential. Galactic winds proved to occur specif-

ically in consequece to a strong clustering of SN events, and were often found to blow

continuously. In Chapter 6 we studied the efficiency of various wind drivers, featuring

a setup with a 1010 M⊙ disc and a genuine NFW potential. We concluded thermally

pressurised bubbles to be the most important ingredient, whereas large bubbles have

shown a trend to producing stronger winds than small ones. Buoyancy and kinetic en-

ergy provide some additional energy to the outflow, but are by far not as efficient as
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thermal energy from SN feedback. We further believe the mass of the galactic disc to

play a significant role. Setups including a disc of Milky Way-like mass do not exhibit

continuous outflows due to the deep disc potential component, widely preventing fila-

ments from escaping the disc. Discs of about 1010 M⊙ have a good chance of producing

considerable supersonic outflows, whereas low-mass discs of 109 M⊙ can give rise to very

strong winds, and might even be disrupted due to feedback.

Overall, our wind strengths for the medium-sized discs are rather on the low side, which

might point to details of super-bubble physics not yet captured by our simulations. Ac-

cording to our findings however, LBGs of 109−1010 M⊙ could well be capable of blowing

continuous winds over a few Gyr. Eventually, these discs become more massive due to

accretion flows and the wind ceases when the disc potential becomes too deep, which

may be the case in most of the SINS galaxies; if however the disc gas is widely depleted,

like in the Milky Way, a wind can no longer be expected.

Future studies on this subject may include some modifications to the presented work.

Since we know the wind to develop through superbubbles, it might prove important

to modify their implementation further. In our superbubbles, the total SN energy was

injected at one point in time. Instead, if the contributing SNe were triggered one by

one, the bubble expansion rate may be altered to match the observations by Oey [2009].

This might lead to more continuous winds with less fluctuation in strength.

One major ingredient not included in this work would be magnetic fields. Since magnetic

field lines are advected by gas entrained by the wind, they give an observational hint

to the existence of outfloing gas, as mentioned in Section 4.4. Observations of magnetic

fields would further allow us to infer the velocity of gaseous outflows in the halo. In

addition, the new LOFAR radio telescope array may give information about synchrotron

radiation in LBGs. This synchrotron radiation can e.g. be emitted by electrons in

shock-heated material, and hence allows to draw conclusions about SN activity in the

respective galaxy.



Appendix

9.1 Global setup conditions and implementations

We give an overview here about all simulations with their respective setup that have

been performed in the context of this work. Table 9.1 contains the dark matter halo

potential profiles, where “∝ ln r” is the logarithmic profile proposed by Flynn et al.

[1996], “conv.” refers to our empirically determined profile resulting in a convergent

baryonic halo matter density with radius r, and “NFW” is the well-known profile found

by Navarro et al. [1996]. The disc parameters include its absolute and relative gas

mass (where “gas fraction” means the relation from disc gas mass to total baryonic disc

mass), and its cutoff radius rcut. Finally, the star formation criteria that have been

implemented in the respective run are shown.
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Table 9.1: Global configurations used in all simulations presented in this work.

Run DM Halo Profile Disc parameters SF criteria

Gas mass Gas fraction rcut

F-ST ∝ ln r 6.0× 1010 M⊙ 60% 10.0 kpc Jeans mass/local density

F-KE ∝ ln r 6.0× 1010 M⊙ 60% 10.0 kpc Jeans mass/local density

Res12 conv. 1.4× 109 M⊙ 90% 3.3 kpc Jeans mass/local density

Res16 conv. 1.4× 109 M⊙ 90% 3.3 kpc Jeans mass/local density

Res30 conv. 1.4× 109 M⊙ 90% 3.3 kpc Jeans mass/local density

Res33 conv. 1.4× 109 M⊙ 90% 3.3 kpc Jeans mass/local density

Res36 conv. 1.4× 109 M⊙ 90% 3.3 kpc Jeans mass/local density

Res65 conv. 1.4× 109 M⊙ 90% 3.3 kpc Jeans mass/local density

CD-1 conv. 1.4× 109 M⊙ 90% 3.3 kpc Jeans mass/local density

CD-1R conv. 1.4× 109 M⊙ 90% 3.3 kpc Jeans mass/local density

CD-3 conv. 1.4× 109 M⊙ 90% 3.3 kpc Jeans mass/local density

CD-3R conv. 1.4× 109 M⊙ 90% 3.3 kpc Jeans mass/local density

CD-4 conv. 1.4× 109 M⊙ 90% 3.3 kpc Jeans mass/local density

CD-4R conv. 1.4× 109 M⊙ 90% 3.3 kpc Jeans mass/local density

ED-3 conv. 1.4× 109 M⊙ 90% 3.3 kpc Jeans mass/local density

ED-4 conv. 1.4× 109 M⊙ 90% 3.3 kpc Jeans mass/local density

R16 NFW 2.1× 1010 M⊙ 50% 5.0 kpc Kennicutt-Schmidt

R30 NFW 2.1× 1010 M⊙ 50% 5.0 kpc Kennicutt-Schmidt

R33 NFW 2.1× 1010 M⊙ 50% 5.0 kpc Kennicutt-Schmidt

R36 NFW 2.1× 1010 M⊙ 50% 5.0 kpc Kennicutt-Schmidt

R65 NFW 2.1× 1010 M⊙ 50% 5.0 kpc Kennicutt-Schmidt

ST20 NFW 2.1× 1010 M⊙ 50% 5.0 kpc Kennicutt-Schmidt

ST50 NFW 2.1× 1010 M⊙ 50% 5.0 kpc Kennicutt-Schmidt

ST100 NFW 2.1× 1010 M⊙ 50% 5.0 kpc Kennicutt-Schmidt

ST200 NFW 2.1× 1010 M⊙ 50% 5.0 kpc Kennicutt-Schmidt

KE0.4 NFW 2.1× 1010 M⊙ 50% 5.0 kpc Kennicutt-Schmidt

TE0.6 NFW 2.1× 1010 M⊙ 50% 5.0 kpc Kennicutt-Schmidt

TE0.4 NFW 2.1× 1010 M⊙ 50% 5.0 kpc Kennicutt-Schmidt

B100 NFW 2.1× 1010 M⊙ 50% 5.0 kpc Kennicutt-Schmidt

NC20 NFW 2.1× 1010 M⊙ 50% 5.0 kpc Kennicutt-Schmidt

NC50 NFW 2.1× 1010 M⊙ 50% 5.0 kpc Kennicutt-Schmidt

NC100 NFW 2.1× 1010 M⊙ 50% 5.0 kpc Kennicutt-Schmidt

NC200 NFW 2.1× 1010 M⊙ 50% 5.0 kpc Kennicutt-Schmidt
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