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Introduction

Observations of the inner area of nearby galaxies have provided evidence for the

existence of super massive black holes (SMBHs) in the centers of galaxies. In com-

bination with the existence of galaxies with active nuclei (AGNs), that are also

assumed to contain super massive black holes, the investigation of black holes lo-

cated in the central area of galaxies is of specific interest. Nevertheless, their real

existence in the centers of galaxies is still only an assumption to explain observations,

but not proven.

In order to accumulate evidence for the assumed existence of black holes in the

centers of galaxies, this bachelor thesis primarily deals with comparisons of obser-

vational and simulated findings. These comparisons determine the validness of the

simulated findings. In combination with this, the black holes typical evolution is

investigated. While it manages to point out assumptions concerning the typical evo-

lution of black holes in the simulation, it is also shown that the significance of these

assumptions is challenged. In the discussed simulation, black holes are generated in

the centers of galaxies with accretion rates larger than zero. As a result, a growth

of mass and a radiation of energy by the black holes has to take place. The analysis

is separated into two parts, the discussion of the accretion rate and the discussion

of the luminosity function, and combined in the summary. Possible implications on

the results of further observations in the end are given depending on the degree of

validness of the description of observations by the simulation.

We present an abstract containing all physical principles used in the second chap-

ter and the summary and conclusion in the first chapter. Here the basic principles of

the expanding universe, black holes and AGNs are described. Fundamental physical

constants and other measured variables, that are not explicitly given in the text, are

listed in the appendix.



1 Theory

1.1 Basic principles of the expanding universe and

black holes

In order to investigate the evolution of black holes in centers of galaxies this section

should introduce some basic principles. These basics, on the one hand, concern

the expansion of the universe in combination with redshift and cosmological time

and, on the other hand, characteristics of black holes and possible ways of their

appearance.

1.1.1 Expanding universe, redshift, cosmological time

For the discussion of the findings, it will be necessary to convert a given redshift

into cosmological time. Therefore, it suggests itself to start with a short overview

of the expansion equations of the universe and to show in this context, how to do

the conversion of redshift into time.

Friedmann-equations. Starting with the cosmological principle, the assump-

tion of homogeneity and isotropy of the universe, it is useful to define comoving

coordinates to derive the expansion rate of the universe. The expansion rate leads

to a generalization of Hubble’s law. Comoving coordinates may be seen as spherical

coordinates with its point of origin located in the center of a sphere with homoge-

neous density. In this case the sphere represents a part of the universe with the

ability to expand radially and, as a result, a time-dependent but still homogeneous

density ρ(t). Starting with a point in time t0 and an arbitrary position ~r(t0) = ~x in

the sphere, the expansion with time leads to a new position,

~r(t) = a(t)~x. (1.1)
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Here a(t) is defined to be the cosmic scale factor. The cosmic scale factor for t0

is set to a(t0) = 1. In order to come to the expansion rate, defined as follows:

H(t) :=
ȧ

a
, (1.2)

one can derive Equation 1.1 with respect to time:

~v(t) =
d

dt
~r(t) =

da

dt
~x =

ȧ

a
~r =: H(t)~r. (1.3)

As mentioned above this is a generalization of Hubble’s law: v = H0D. Here D is

the distance from the earth to a light emitting illuminant and H0 = H(t0). In this

case, t0 correspond to present day and H0 = h100kms−1Mpc−1. In this case h is

used in order to parametrize inaccuracy in measuring H0 and is set to be h = 0.704

(see Komatsu et al. (2011)). Hubble’s law was derived from the redshift, that is

observed for most galaxies, and is a result of their radial movement pointing away

from the earth. The redshift is defined as follows:

(1 + z) =
λ′

λ0

respectively z =
dλ

λ0

=
λ′ − λ0

λ0

=
dv

c
, (1.4)

where λ′ is the observed wavelength of the light, emitted by a source, e.g. a galaxy,

and λ0 is the wavelength in the reference system of the emitter. The last identity

in Equation 1.4 is only valid for small redshift, where v holds v ≈ zc. The idea of

an expanding universe results of Hubble’s law, that leads us to an expansion rate

greater than zero in present day.

For further considerations of the expansion of the universe, equations of motion

were derived by Friedmann by using the general theory of relativity. They are called

Friedmann-equations and can be written as follows:(
ȧ

a

)2

=
8πG

3
ρ− Kc2

a2
, (1.5)

ä

a
= −4πG

3

(
ρ+

3P

c2

)
. (1.6)

These two equations depend on the density ρ and the pressure P. The first one
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additionally depends on a constant K, while the value of K determins the evolution

of the expansion. Density ρ and pressure P can also be written as

ρ = ρm + ρr + ρv, P = Pm + Pr + Pv = Pr + Pv, (1.7)

where the three indices represent “matter”, “radiation” and “vacuum” . The matter

component ρm characterizes the mass-density of matter, while v̄ � c. The matter

component of the pressure Pm can be set to zero because Pm

c2
� ρm (see Equation

1.6). For the radiation component v̄ ≈ c and Pr and ρr are linked by Pr = 1
3
ρrc

2.

The vacuum component holds Pv = −ρvc2 with ρv = Λ
8πG

. In this case, Λ is the

cosmological constant, that is assumed to be greater than zero. Using ρm(t) =

ρm,0a
−3(t), ρr(t) = ρr,0a

−4(t), ρv(t) = ρv = constant and ρcrit :=
3H2

0

8πG
one can define

Ωm :=
ρm,0
ρcrit

, Ωr :=
ρr,0
ρcrit

, ΩΛ :=
ρv
ρcrit

=
Λ

3H2
0

, (1.8)

with Ωm = 0.268, Ωr = 0.044 and ΩΛ = 0.728 (see Komatsu et al. (2011)). In

combination with 1.8 Equation 1.5 can be written as:

H2(t) = H2
0

[
a−4(t)Ωr + a−3(t)Ωm − a−2(t)

Kc2

H2
0

+ ΩΛ

]
. (1.9)

For H(t0) = H0 and a(t0) = 1, K turns out to be K = (H0

c
)2(Ωm + Ωr + ΩΛ − 1),

which leads to

H2(t) =

(
ȧ

a

)2

= H2
0 [a−4(t)Ωr + a−3(t)Ωm + a−2(t)(1− Ωm − ΩΛ) + ΩΛ]. (1.10)

From equations 1.8 and 1.10 it becomes evident, that the characteristics of the uni-

verse’s expansion depend on the cosmological constant.The cosmological constant

is, as mentioned above, assumed to be greater than zero.

Cosmological time and redshift. Using dt = da(da
dt

)−1 = da
aH

, one comes to an

expression for the cosmological time for a given cosmic scale factor by executing the

integral:
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t(a) =
1

H0

∫ a

0

[a−2Ωr + a−1Ωm + (1− Ωm − ΩΛ) + a2ΩΛ]−
1
2 da

≈ 1

H0

∫ a

0

[a−1Ωm + (1− Ωm − ΩΛ) + a2ΩΛ]−
1
2 da. (1.11)

In order to replace the scale-length-dependence by a redshift-dependence, the

definition of the redshift given by Equation 1.4 can be used. In combination with

Equation 1.3 and Equation 1.4, dλ/λ0 can be written as follows:

dλ

λ0

=
dv

c
=
H(t)

c
dr = Hdt =

da

a
. (1.12)

The integration of dλ
da

= λ0
a

leads to: λ(a) = Ca = λ′a respectively 1
a

= λ′

λ(a)
, with C

a constant. This leads to:

1 + z =
1

a
. (1.13)

The combination of equations 1.11 and 1.13 with the approximation Ωm + ΩΛ ≈ 1

(Einstein-de Sitter model) leads to an expression for t(z), that easily can be inte-

grated. For this approximation the cosmological time turns out to be:

t(z) =
2

3H0(1 + z)
3
2

. (1.14)

For further information see Schneider (2008) chapters one and four.

1.1.2 Black holes

Concerning black holes, Shapiro and Teukolsky wrote:“A black hole is defined sim-

ply as a region of spacetime that cannot communicate with the external universe.

The boundary of this region is called the surface of the black hole, or the event hori-

zon.” (Shapiro and Teukolsky (1983)). In order to understand this definition, it is

described in the following subsection, how these objects form and which character-

istics they have.

Onset of black holes. Stellar black holes can be formed by the gravitational

collaps of stars when the energy recovery by nuclear fusion has come to an end.
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Generally speaking, a physical systems is in an equilibrium condition when a balance

of forces is reached. In case of an active star equilibrium condition means, that the

absolute value of the gravitational force has to be equal to the absolute value of the

force pointing outwards in radial direction from the center of the star, i.e.:

~Fgravitational = −~Fradial = −(~Fcentrifugal + ~Fthermal + ~Fradiation). (1.15)

The bond energy per nucleon has a maximum for iron. As a result, after the produc-

tion of iron the nuclear fusion has to break, because no more energy can be gained

by it. This leads to a decreasing radial force. In this case, the gravitational force

dominates. This in turn leads to a contraction of the star.

The further evolution is strongly correlated with the mass and the mass density.

If the mass is higher than the Chandrasekhar limit, MCh ≈ 1.5M�, the force

following from the Pauli principle by compressing fermions cannot break the com-

pression and the gravitational collaps arises. A white dwarf forms out of the star.

As mentioned above the further processing is also correlated to the density and thus

to the radius of the object. If the particular radius of the object fulfills the following

conditions:

R ≤

5× 108cm (white dwarf)

3× 105cm (neutron star)
, (1.16)

the white dwarf transforms into a neutron star or into a black hole. Black holes

belonging to this type are called stellar black holes. Otherwise, the evolution may

come to rest at white dwarf or neutron star level. For a detailed derivation of the

Chandrasekhar limit and the radius respectively the density limit see Shapiro and

Teukolsky (1983).

Characteristics. With respect to the equations of relativity, black holes may

only have three elementary properties: mass, angular momentum and electrical

charge. As mentioned above, there exists a distance defining the boundary of the

black hole. Within this distance not even light has the ability to escape from the

gravitational field produced by the black hole. According to this, for vanishing
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Table 1.1: Classification of BHs, depending on the mass.

Stellar BHs IMBH SMBH

Mass/M� 1.5 - 100 100 - 105 > 105

angular momentum and electrical charge the distance is defined as:

rs :=
2GM•
c2

= 2.9× 105cm
M•
M�

, (1.17)

called the Schwarzschild radius. Although this is only an approximation, there is

no need to investigate the boundaries of black holes in a more detailed way. To get

further information see Schneider (2008) chapter one and four and Mueller (2010).

1.1.3 Super massive black holes in centers of galaxies

In accordance to the mass, black holes are separated in three categories. The two cat-

egories besides the stellar black holes are the intermediate-mass black holes (IMBHs)

and the super massive black holes (SMBHs). That means explicitly: black holes with

a mass from 1.5 M� up to 102M� are called stellar black holes, those with 102M�

up to 105M� are called intermediate-mass black holes and those with a mass higher

than 105M� are called super massive black holes (see Table 2.4). IMBHs and SMBHs

may form from stellar black holes by accretion or merging events.

In this subsection it should be explained, which reasons lead to the assumption of

the existence of SMBHs in the center of the milky way and in the centers of other

galaxies. Furthermore, the correlations of the properties of the centric black holes

with the properties of the host galaxies are discussed.

The center of the milky way. Due to observations, it was possible to identify

the galactic center to be Sagittarius A* (Sgr A*), which is a compact radio source

with a very low own velocity and which itself is a part of Sagittarius A (Sgr A).

The observation of individual stars in this inner region demonstrates, that the stars

move on Keplerian orbits, which leads to the assumption of a nearly non-radiating

massive object in the collective focus of the ellipses. This object has to have a

very low latitude. Using the Keplerian laws (see box on page 8) and the measured

velocity of the stars, one can calculate the mass of the central object with the help
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of Equation 1.19:

M• ≈ 3× 106M�. (1.18)

It is nearby to identify this object in the center of the milky way with a black hole

respectively with a SMBH, because the measurements for this region cannot be ex-

plained by an accumulation of stars and, moreover, there is also no other appropriate

explanation.

The Keplerian laws (in matter of the solar system, see Demtroeder
(2005), p. 67 ):

• All planets move on ellipses, with the sun located in one of the two
focuses.

• The space, swept out by the vector between the sun and a planet, is
equal for equal time slices.

• For all planets the square of the time of circulation divided by the
cube of the semi-major axis is constant.

⇒ v =

√
GM•
r

(1.19)

SMBHs in other galaxies. Additionally to the black hole in the center of the

milky way and the assumption of the existence of SMBHs in the center of galaxies

with an active galactic nucleus (discussed in Section 1.2), there are some more

reasons to suppose the existence of black holes in the centers of further galaxies.

A black hole in the center of a galaxy cannot be observed by the given angular

resolution directly, because its boundary, defined as the Schwarzschild radius (see

Subsection 1.1.2), is to small. Nevertheless, one can measure its influence on the

kinematics of the surrounding stars and gas by taking into account galaxies beeing

not too far away from the earth. This influence arises, when the Keplerian velocity,

described by Equation 1.19, becomes greater than or equal to the velocity dispersion

σ in this inner region of the galaxy in regard. That means for vKepler ≈ σ the

minimal distance rmin from the center, within the observation should be made, can
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be calculated to be:

rmin =
GM

σ2
. (1.20)

As mentioned above, the available angular resolution leads to restrictions. Nev-

ertheless, it was possible to detect a kinematic behavior in several cases by using

spectroscopic methods, that suggest the assumption of Keplerian orbits in the inner

region of many galaxies. As a result, a SMBH in their centers is assumed.

Correlations between black hole mass and velocity dispersion. Observa-

tions have pointed out a correlation between global properties of host galaxies and

their central black holes described by the following equation:

log

(
MBH

M�

)
= α + βlog

(
σ

σ0

)
. (1.21)

Here σ0 = 200km/s and σ is the velocity dispersion of the host galaxy, which is

not equal to the velocity dispersion in the inner region of a galaxy also described

by σ and used above. The parameters α and β are given by: α = 8.13 ± 0.06 and

β = 4.02 ± 0.32 (see Tremaine et al. (2002)), while the determination of β is not

completed. For more information concerning black holes in centers of galaxies see

Tremaine et al. (2002), Mueller (2010) and Schneider (2008) chapter three.

1.2 Active galactic nuclei (AGNs)

1.2.1 Introduction

In Subsection 1.1.3 the assumed existence of active black holes in the centers of some

galaxies was already mentioned. This section deals with this topic in a continuative

way. The attribute ’active’ in this cases is to be understood as marking those black

holes to play a striking role in the emission of electro-magnetic radiation by the

totality of the galaxies’ emission, they respectively belong to. Their particular role

in the emission is originated in the accretion of matter upon them. As a result, the

area surrounding the central black hole in such a galaxy in combination with the

BH is called active galactic nucleus (AGN). Because of the fact, black holes
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and therefore also AGNs are the objects of investigation in this thesis, not only the

most important properties of AGNs will be discussed in this section, but also further

information should be presented.

It was already mentioned, that the difference between galaxies with and without

an AGN may be found in the emission of electro-magnetic radiation. That means

explicitly, that, nevertheless there exist differences in the appearance of AGNs, in

most cases the luminosity of AGN-galaxies is superior by a few orders of magnitude

than the luminosity of galaxies with a luminosity restricted more or less on the stel-

lar components. For bright AGNs the bolometric luminosity may be L ≈ 1047 erg
s

.

In observations appears the radiant source to be point-shaped and in deed the en-

largement d of the inner region of the AGN seems to be restricted to less than

d = 2× 10−3pc though radio waves are emitted by a region extending to more than

one megaparsec and occurring as two lobes. Furthermore, the optical spectrum ex-

hibits a continuous fraction extending from radio waves to x-rays or gamma rays and

a fraction build up of wide emission lines. As it will be discussed below, but should

already be mentioned here, these wide emission lines point to velocities higher than

the typical velocities in galaxies without an AGN. Because of the enormous lumi-

nosity, observations of active galaxies are possible across long distances. This may

lead to high redshifts as a result of the expansion of space.

A SMBH in the center. Once again, the origin of the assumption of the ex-

istence of SMBHs in the centers of galaxies has be motivated. This time for active

galaxies. The most important reason leading to this assumption is the enormous

amount of energy generation, that is needed for such a high luminosity emitted

by a radiant source within a radial extension of one light day. As a result, the

energy generation cannot be explained by nuclear fusion, as working in stars, but

by the transformation of potential energy in attendance of the gravitational field

of a SMBH. That process is called accretion and will be discussed in a separated

subsection below (see Subsection1.2.3). Another aspect is the assumed existence of

SMBHs in the centers of other galaxies. Although this argument was vice versa used

for the explanation in Subsection 1.1.3, the argumentation is not circular, because

it suggests itself to use a consistent theory for the description of as many galax-

ies as possible. This analogy between ’normal’ and ’active’ galaxies is the most

important reason for the detailed discussion of SMBHs in the centers of galaxies,

made above. It was already mentioned, that the radio wave-emitting regions extend
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to megaparsec scales and occur as lobes. These lobes are expanded in a constant

direction for long time scales. This might be explained by a rotating black hole with

a constant direction of angular momentum.

Components of AGNs. Besides the already mentioned centrical black hole and

the radio lobes arising as matter jets some more components within an AGN exist.

In connection with the unification model, discussed in Subsection 1.2.2, the different

components should be studied here. It is important to point out, that not all types

of AGNs evidently have them in the same shape. The following list may give a short

overview of their situation and their contribution to the electro-magnetic spectrum,

whether their is one. The position of the particular components may be seen in

Figure 1.1.

Figure 1.1: Components of an AGN

• SMBH: The black hole in the center provokes the gravitational potential,

that is the driving existence in the AGN.

• Accretion disc: As a result of the angular momentum barrier, the gas stream-

ing in cannot reach the black hole directly. This barrier results of the angular

momentum of the individual gas particles. This becomes demonstrative when

examining the energy for a two body problem. For mgas �M• we get

E =
1

2
mgasṙ

2 +
Lgas
2mr2

+ Vgrav(r), (1.22)
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where mgas is the mass of the gas particle, Lgas is its angular momentum, and

Vgrav is the gravitational potential, provoked by the black hole. The consid-

eration of the limiting behavior of Equation 1.22 leads us to lim
r→0

E =∞. As

a result, the gas accumulates in a disk fulfilling Keplerian motion respectively

differential motion, i.e. the angular velocity depends on the distance from the

center. Because of the differential motion, friction forces occur in the disk

and heat it up. This in turn leads to thermal emission of electro-magnetic

waves. For a blackbody this radiation would follow Planck’s law, but has to

be modified for an accretion disk. Nevertheless, the thermal emission explains

the existence of a continuous fraction in the spectrum.

• Broad line region (BLR): As mentioned above, a fraction containing emis-

sion lines exists besides the continuous spectrum. When taking into account

the Doppler effect, the widest emission lines allow to suggest velocity of the

emitting gas of about 10,000 km/s. In this region of the AGN, the emission

of photons results from photoionization of gas by photons out of the continu-

ous spectrum. This gas seems to be accumulated in clouds having a distance

of r ≈ 1000rs from the center. This distance additionally depends on the

luminosity of the AGN.

• Narrow line region (NLR): The emission lines occurring from this region

allow to draw the conclusion, that the gas in this area moves with about 400

km/s. Here the same physical processes are in play as in the BLR. Observations

of this region show a cone shaped distention possibly resulting of the dust torus.

In the dust torus the photons of the continuous spectrum are scattered and

are absent for photoinonization from this point in time.

• Jets: The extension of radiant sources emitting radio waves for over one mega-

parsec, was already mentioned above. These sources are build up of matter jets

transporting electrons away from the black hole. As a result, electrons with

relativistic velocities move in magnetic fields and emit synchrotron radiation,

containing x-ray waves, optical waves, and radio waves.

Correlations between AGNs and their host galaxies. So far, only the active

center of active galaxies was discussed. The existence of an AGN may also influence

the properties of the whole galaxy or at least the temporal development may be

correlated (see Fontanot et al. (2011)). These correlations e.g. refer to the mass of
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the central SMBH and to the stellar mass, luminosity and velocity dispersion. I. e.

galactic winds originating from the enormous luminosity of the AGN may remove

a lot of cold gas and hence the star formation rate can be constrained. Moreover,

merging events are thought to indicate active centers as well as leading to the build

up of spheroidal shapes of galaxies. Within the scope of that, another correlation

between the host galaxy and the AGN may be found.

1.2.2 Unification model for AGNs

In order to present the main features of the unification model, in this subsection

several forms of appearance of AGNs occurring in observations are mentioned at

first. From this listing it should become evident which components, presented in

Subsections 1.2.1, each type of AGN is at least attached with, due to its contributions

to the electro-magnetic emission.

• Quasi-stellar objects (QSOs): This type of galaxies containing an AGN is

the most luminous one. Its electro-magnetic spectrum contains a continuous

fraction, a fraction with broad and narrow emission lines, and a radio fraction.

Different QSOs may differ in the intensity of their radio emission.

• Seyfert galaxies: These galaxies are distinguished into two types as a func-

tion of the intensity of their broad emission lines, while the luminosity is lower

than that of QSOs. Observations demonstrate the host galaxies in this case

to be spiral galaxies.

• Radio galaxies: The difference between Seyfert galaxies and this type is pri-

marily the intensity of the radio emission. Due to its name, for radio galaxies

it is higher than for Seyfert galaxies. Moreover, the host galaxies of this type

are elliptical. In correlation with the Seyfert galaxies radio galaxies are dis-

tinguished into two types with respect to the intensity of their broad emission

lines. I. e. narrow-line radio galaxies (NLRG) and broad-line radio galaxies

(BLRG).

• Blazars: In this case, not only the intensity of the broad emission lines is a

criterion for the distinction, but also the intensity of the narrow emission lines.

The first type are the optically violent variables (OVVs), whose spectra show

emission lines, and the second type are BL Lacs, whose spectra do not show
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emission lines at all. The presence of emission lines in the spectra seems to

be related to the luminosity of the blazars, i. e. for highly luminous ones the

emission of the jets dominates the spectrum. Furthermore, in both cases the

luminosity varies in short time intervals, which may transform OVVs into BL

Lacs and vice versa.

Unification. The unification of the AGNs leads to the model, shown in Figure

1.1. The difference in the form of appearance in this way is thought mostly to be

a result of the viewing direction, while the shape of the components also leads to

differences additionally to the differences in the shape of the host galaxies. The

angle of sight-dependence may result of non-isotropic emission of the AGN, as it

is shown in Figure 1.1. Another aspect leading to the different types, may be the

angular momentum of the SMBH, its mass and the amount of matter available in

the accretion disk.

1.2.3 Accretion, luminosity and Eddington limit

This subsection deals with the already mentioned accretion of matter onto a black

hole in more details. Delivered in this, the temperature profile of the accretion disk,

the limitations constraining the accretion itself (Eddington limit) and the period in

time for markedly growth of the black hole by accretion are given.

Accretion and luminosity. The accretion disk originates from the accumu-

lation of gas, initiated by the SMBH. The physical process in play in this case is

the gravitation. The loss of gravitational energy in this central force field can be

converted into kinetic energy. Following from the virial theorem (see box on page

16), only half of the potential energy is transformed into kinetic energy. The rest

is transformed into intrinsic energy, i. e. in thermal energy resulting from friction.

Once again it should be mentioned, that the friction occurs because of the differen-

tial rotation of the accretion disk (see Subsection 1.2.1). The energy, gained by a

process transforming matter into energy according to the theory of special relativity,

can be given by:

E = εmc2, (1.23)

where ε gives the efficiency of the transformation. For accretion ε may be about
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0.06 for non-rotating and up to 0.29 for rotating black holes. Referring to the loss

of potential energy the amount of thermal energy, gained by accretion, is:

∆E ≈ 1

2

GM•m

r2
∆r, (1.24)

where the factor 1
2

appears because of the virial theorem (see Equation 1.26), and

m stands for the mass of a body moving towards the center. The power in this case

is in accordance with the luminosity, that is given as (see also box on page 16):

∆L = ∆Ė =
1

2

GM•ṁ

r2
∆r respectively ∆L = 4π∆rσSBT

4(r), (1.25)

where σSB stands for the Stefan-Boltzmann constant. The second Equation in 1.25

corresponds to the Stefan-Boltzmann law with its characteristic T 4-dependence, that

is valid for a blackbody, multiplied with two according to the two sides of the accre-

tion disk. The fact, that the Planck spectrum has to be modified for the accretion

disk, was already mentioned. This is a result of the radius-dependence of the tem-

perature of the disk. The temperature may be derived from Equation 1.25 to be:

T (r) = ( 3c6

64πσSBG2 )
1
4 (ṁ)

1
4 (M•)

− 1
2 ( r

rs
)−

3
4 . In particular that means, that the disk can-

not be seen as a blackbody with constant temperature. This in turn leads to the

continuous spectrum.

Eddington limit. As comparable to stars, an equilibrium state may occur, when

an equilibrium of forces is reached. In this case only the forces originated in radiation

and gravitation are of interest. Accretion onto the black hole is only possible for:

~Fgravitational > −~Fradiation respectively
∣∣∣~Fgravitational∣∣∣ > ∣∣∣~Fradiation∣∣∣ , (1.30)

where an isotropic emission of radiation was supposed. In order to come to an

equation for Fradiation, only the scattering process at free electrons of the plasma

has to be considered. Protons and nuclei can be neglected, because their scattering

cross section is much smaller. This may be seen by taking into account the equation

for the scattering cross section for the Thomson scattering, that is given by:

σT =
8π

3
(

e2

4πε0mc2
)2, (1.31)
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The virial theorem (see A. Weigert (2009), p. 12f ): This theorem
is true for closed n particle systems being in an equilibrium state, while
energy conservation is always given for closed systems. Furthermore, it is
referred to the mean value for long time scales. It says:

Ekin = −1

2
Epot = −Eges respectively ∆Epot = −2∆Ekin. (1.26)

Luminosity (see. A. Weigert (2009), p. 41f ): The luminosity gives
the energy flux (energy per time) through a surface provided by a radiant
source e. g. located in the middle of a sphere. In combination with the
definition of the radiant flux, F =

∫∫
Isin(Θ) dΦdΘ, the energy flux for a

sphere with radius R is given by:

L = 4πR2F. (1.27)

The radiation, yield by the radiant source, in the distance r from the source,
than is given by:

S =
L

4πr2
. (1.28)

The distance r from the source for a given luminosity L and a given radiation
S may also be defined as luminosity distance:

DL(z) =

√
L

4πS
. (1.29)

It is important to note, that for the determination of the bolometric lumi-
nosity also the distance between the observer and the radiant source has
to be known. Thus the magnitude is separated into apparent and absolute
magnitudes, while the apparent magnitude may be observed and the ab-
solute magnitude has to be calculated from the apparent. The attribute
bolometric in this case refers to the summation of the luminosities respec-
tively magnitudes for specific frequency intervals. The redshift-dependence
of the luminosity distance in this case results of the expansion of space.



1.2 Active galactic nuclei (AGNs) 17

with σT ∝ 1
m2 . For Thomson scattering the force onto an electron is given by:

Fradiation =
σTL

4πr2c
. (1.32)

From now on σT is the cross section for an electron calculated by Equation 1.31 with

m = Me and r indicates the distance between the electron and the radiant source.

Using equations 1.30 and 1.32 and Newton’s law of gravitation, an upper limit for

the luminosity can be derived to be:

Ledd :=
4πcGmp

σT
M• ≈ 1.3× 1038 M•

M�

erg

s
(Eddington luminosity). (1.33)

I. e. only for L < Ledd accretion onto the SMBH is possible. Furthermore, it is

possible to derive a lower limit for the mass of a SMBH in the center of an AGN for

an observed luminosity:

M• > Medd :=
σT

4πcGmP

L ≈ 8× 107 L

1046 erg
s

M�. (1.34)

Using Equation 1.23, the luminosity can also be written as:

L = Ė = εṁc2. (1.35)

This leads to an equation for the accretion rate for a given ε and a given L,

ṁ =
L

εc2
≈ 0.18

1

ε
(

L

1046 erg
s

)(
M�
1yr

) (1.36)

respectively

ṁ =
L

Ledd

1.3× 1038 erg
s

εc2

M•
M�

=:
L

Ledd
ṁedd. (1.37)

In Equation 1.37 the Eddington accretion rate was defined, which indicates the max-

imal accretion rate onto a black hole.

Increase of mass in time. Due to accretion, the total mass of the SMBH has
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to grow. When the accretion rate is constant in time, the equation

ṁ =
∆M

∆t
=

M•
tevolution

(1.38)

has to be valid. This leads to:

tevolution = ε(
L

Ledd
)5× 108yr. (1.39)

Equation 1.38 will be used later on to investigate the evolution of black holes in

AGNs.

1.2.4 Bolometric luminosity function of AGNs

Generally speaking, the luminosity function of AGNs for a fixed redshift z in words

is defined to be the number of AGNs per volume with bolometric luminosities in a

given interval [L,L+dL]. The definition may also be written as:

Φ(L, z) :=
dN(L, z)

dLdV (z)
, (1.40)

where the redshift-dependence of the volume dV results from the expansion of space

leading to comoving coordinates. This was discussed in Subsection 1.1.1. Because

of the redshift-dependence of the luminosity function, its interpretation is very im-

portant for the understanding of the outcome and evolution of SMBHs as well as

for the evolution of galaxies itself. This is due to the correlations between SMBHs

and their host galaxies (see Subsection 1.1.3) and the correlations between AGNs

and again their host galaxies (see Subsection 1.2.1).

Problems and results. The practical determination of the bolometric lumi-

nosity function is attached with a few problems. One difficulty is the restriction of

observations on specific wavelength ranges in normal cases. Due to that, a general-

ization in order to come to the bolometric luminosity function is only valid, if the

different spectral shapes for the wavelength ranges, the redshift of the detected pho-

tons, and darkening by interstellar medium (ISM) are taken into account. Moreover,

the completeness of the measurement has to be given.

In order to come to a bolometric luminosity function, P. Hopkins, G. Richards

and L. Hernquist took into account measurements of luminosity functions for QSOs
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(Hopkins et al. (2007)). In contrast to the luminosity function of galaxies, that may

be approximated by a Schechter function, they followed the common ansatz and

used a double power law for fitting:

Φ(L) =
Φ∗

( L
L∗

)γ1 + ( L
L∗

)γ2
(1.41)

respectively

Φ(L) =

Φ′∗
L∗

( L
L∗

)−α + ( L
L∗

)β
(for optical wavelength range). (1.42)

In this case, the redshift-dependence is associated with the parameters γ1, γ2, Φ∗,

and L∗ representing the best-fit parameters for the combination of the measurements

and are given in Table 1.2. The other parameters in Equation 1.42 are given by

α = −(γ1 + 1), β = −(γ2 + 1), and Φ′∗ = Φ∗
ln(10)

.

Table 1.2: Best-fit parameters (see Hopkins et al. (2007)). ((1) Mpc−3; (2) L� =
3.9× 1333erg/s)

< z > log(Φ?
1) log(L?)

2 γ1 γ2

0.1 −5.45± 0.28 11.94± 0.21 0.868± 0.050 1.97± 0.17
0.5 −4.66± 0.26 12.24± 0.18 0.600± 0.136 2.26± 0.23
1.0 −4.63± 0.15 12.59± 0.11 0.412± 0.122 2.23± 0.15
1.5 −4.75± 0.19 12.89± 0.13 0.443± 0.145 2.29± 0.20
2.0 .4.83± 0.05 13.10± 0.04 0.320± 0.046 2.39± 0.07
2.5 −4.96± 0.14 13.13± 0.09 0.302± 0.091 2.30± 0.15
3.0 −5.23± 0.12 13.17± 0.10 0.395± 0.060 2.10± 0.12
4.0 −4.66± 0.37 12.39± 0.32 −0.254± 0.736 1.69± 0.18
5.0 −5.38± 1.19 12.46± 1.10 0.497± 0.458 1.57± 0.41
6.0 −5.13± 0.38 11.0 0.0 1.11± 0.13

For more information concerning sections 1.2 see Schneider (2008) chapter fife,

Mueller (2010), and Fontanot et al. (2011).



2 Simulation, findings and discussion

2.1 Simulation

In order to investigate the evolution of black holes we study a cosmological, hydro-

dynamic simulation. The code, P-GADGET3, used for the simulation is an ex-

tended version of GADGET2 (Springel et al. (2001)). It includes tree particle-mesh

(TreePM) and smoothed particle hydrodynamics (SPH) methods. In P-GADGET3

cooling, star formation and supernova-driven winds (Springel and Hernquist (2003)),

chemical enrichment from stellar population, AGB stars and SNe (Tornatore et al.

(2004)), low-viscosity SPH (Dolag et al. (2005)), black hole growth and feedback

from AGN (Springel et al. (2005), Fabjan et al. (2010)) are included.

The number of particles within the simulated, cubic box depends on the used

resolution, while the edge length is a = 48Mpc/h. For medium resolution (mr)

the box contains 2 × 813 particles, for high resolution (hr) 2 × 2163 particles, and

for ultra high resolution (uhr) 2 × 5763 particles. As a result, the mass resolution

for each resolution is also different. For mr mdm = 1.3 × 1010M�/h and mgas =

2.6 × 109M�/h, for hr mdm = 6.9 × 108M�/h and mgas = 1.4 × 108M�/h, and for

uhr mdm = 3.6 × 107M�/h and mgas = 7.3 × 106M�/h. According to WMAP7

(Komatsu et al. (2011)) the cosmological parameters Ωm, Ωr, ΩΛ, and h are set

to: Ωm = 0.268, Ωr = 0.044, ΩΛ = 0.728, and h = 0.704. The efficiency ε for the

transformation of matter into energy, described by Equation 1.23, is 0.1. The indices

of the snapshots correspond to redshifts. The redshifts are given in the discussion,

when used.
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2.2 Findings and discussion

2.2.1 Accretion rate

In the discussed simulation, all black holes are created in the centers of galaxies

when the galaxy crosses a given mass limit. This limit depends on the chosen

resolution and shifts to lower values with increasing resolution. As a result, most

of the simulated black holes can be classified as SMBHs, or at least as IMBHs

(see Table 2.4). Furthermore, the so called seeding of black holes starting with a

given mass limit leads to the characteristic sharp dividing line for the lower limit

of masses shown in figures 2.1, 2.2, and 2.3. The consideration of the accretion

rate in the simulation is of specific interest, because it plays an important role in

the evolution of the black holes. I. e., on the one hand, it determines the growth of

mass, and, on the other hand, it enables the calculation of the bolometric luminosity.

Therefore, the evolution of the accretion rate, especially its correlation with mass

for the whole population of black holes, should be discussed in this subsection. The

accretion rate in the studied simulations is implemented to be proportional to the

density of surrounding gas and the square of the black holes mass. As a result of

the proportionality to the square of the mass, problems concerning the description

of the accretion rate for relatively low masses occur. This has to be taken into

account especially in combination with the resolution dependence of the mass limit

for the seeding of black holes. Furthermore, uncertainty about the reliability of the

numerical methods used in the high resolution simulations are still left.

In order to investigate the evolution, at first a comparison of observational and

simulated findings concerning black holes in the centers of galaxies in combination

with a short description of the simulated data will be done. In a second step, the

findings are discussed in more detail. The comparison of the simulated data with

observational findings helps to classify possible predictions, made by the analysis of

the simulation. Observational data for several types of AGNs are given in Table 2.5.

Description and comparison. The simulated findings depend on the chosen

resolution, mr, hr, or uhr. Thus for each data set the values are presented separately,

but compared with observational data in one.

• Medium resolution: Black holes are present for redshifts reaching from

z = 3.3810 to z = 0.0, while the mass range of the black holes within this
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redshift interval expands from M•,min ≈ 106M� to M•,max ≈ 1010M�. Includ-

ing all data for all redshifts we find, that the lowest accretion rate, ṁmin ≈
10−16M�/s, occurs for a black hole having a mass of M• ≈ 3.5× 106M�, and

the highest accretion rate, ṁmax ≈ 10−6M�/s, occurs for a black hole having a

mass of M• ≈ 3×109M�. All accretion rates are lower than the corresponding

Eddington accretion. As shown in Figure 2.1, the typical values of the accre-

tion rate are correlated with the mass range, the black holes are located in.

This leads to three groups. I. e., for black holes having masses from 106M� up

to 2× 107M� the accretion rate reaches from 0.1% up to approximately 100%

of the Eddington accretion rate. For black holes having masses from 2×107M�

up to 3 × 108M� the accretion rate reaches from 1% up to 100% of the Ed-

dington accretion rate. And for black holes having masses from 3× 108M� up

to 1010M� the accretion rate reaches from 0.1% up to 10% of the Eddington

accretion rate (see also Table 2.1). The Eddington limit is plotted in Figure

2.1 as a continuous line, while each cross represents an individual black hole.

Table 2.1: Correlation of mass range and characteristic accretion rate (mr).

Group I II III
M•/M� 106 − 2× 107 2× 107 − 3× 108 3× 108 − 1010

ṁ/ṁEdd 0.001 − ≈ 1 0.01 − 1 0.001 − 0.1

• High resolution: As for the mr sample, the redshifts at which black holes

are present reach from z = 3.3810 to z = 0.0. The lower mass limit shifts to

M•,min ≈ 2× 105M�, and the upper limit stays at M•,max ≈ 1010 M�. The in-

terval of the accretion rates is comparable to that of the mr. For the given red-

shift interval it extends from ṁmin ≈ 10−16 M�/s up to ṁmax ≈ 5×10−6 M�/s.

The mass corresponding to the lower accretion rate limit is M• ≈ 3× 105M�

and the mass corresponding to the upper limit is M• ≈ 7× 108. As for the mr

resolution, the accretion rate stays below the Eddington limit. From Figure

2.2 again the formation of three individual groups in the whole population can

be seen. The accretion rates of black holes within the intermediate mass range

seem to be correlated to the redshift (see Figure 2.2). For redshifts larger than

0.3, the first group contains black holes having masses from 2× 105M� up to

106M� and having accretion rates from 0.01% up to 30% of the Eddington

accretion rate. The intermediate mass range respectively the second group
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contains black holes having masses from 106M� up to 2× 107M� and having

accretion rate from 1% up to 100% of the Eddington accretion rate. The third

group contains black holes having masses from 2× 107M� up to 1010M� and

having accretion rates from 0.01% up to 1% of the Eddington accretion rate.

For redshifts lower than z = 0.3, the lower limit of the accretion rate in the

intermediate mass range is lower than 1%. of the Eddington accretion rate.

I. e. the accretion rate in the intermediate mass range decreases for decreasing

redshift. In Table 2.2 the characteristics for each of the three groups are once

again given. These values are valid for redshifts larger than 0.3.

Table 2.2: Correlation of mass range and characteristic accretion rate (hr) ((1)
Valid only for: z > 0.3)

Group I II III
M•/M� 2× 105 − 106 106 − 2× 107 2× 107 − 1010

ṁ/ṁEdd 10−4 − 0.3 0.01 − 11 10−4 − 0.01

• Ultra high resolution: In this case, the redshift interval at which black

holes are present expands from z = 6.81025 to z = 0.470194, and the mass

reaches from M•,min ≈ 2× 104M� up to M•,max ≈ 2× 108M�. In contrast to

the mr and the hr, the existence of three groups is not evidently given, as it

can be seen in Figure 2.3. Later on in the discussion, hints on the formation

of three groups also in the uhr will be discussed, while at this point only two

groups may be pointed out. The lowest accretion rate, ṁmin ≈ 10−23M�/s,

corresponds to a black hole having a mass of M• ≈ 7×104M�, and the highest

value for the accretion rate, ṁmax ≈ 10−9M�/s, corresponds to a black hole

having a mass of M• ≈ 107M�. Also for this resolution, there is no accretion

with a larger value than the Eddington limit. The characteristics for this

resolution are given in Table 2.3.

Table 2.3: Correlation of mass range and characteristic accretion rate (uhr).

Group I II
M•/M� 2× 104 − 2× 105 2× 105 − 2× 108

ṁ/ṁEdd 0 − 0.1 10−5 − ≈ 1

In order to compare the characteristics of the simulated AGNs with that of observed

ones the mass ranges and the accretion rate ranges for the individual resolutions are
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listed in Table 2.4. It is important to note that this comparison is more a rough

estimate of the significance of the simulated findings than a statistical evaluation.

Nevertheless, it is important for the discussion of the results. One problem for a

well-founded evaluation would be the fact, that the accretion rate in Table 2.5 is

only an estimate, because the bolometric luminosity has to be calculated under the

assumption of isotropic radiation. Furthermore, the value for the efficiency is only

an estimate.

From Table 2.5 we see, that the mass range of observed AGNs extends from

106 M� up to 3× 109 M�. In Subsection 1.1.3 the classification of black holes with

regard to their masses was given. As a result, all black holes in observed AGNs

seem to be SMBHs. While in the uhr the upper limit is not exceeded, in the mr

and in the hr the heaviest black holes have masses up to 1010 M�. This may be

a result of the fact that the lowest redshift for the uhr is not 0.0 as for the mr

and the hr but 0.470194. But note, that black holes having masses larger than

M• = 3× 109 are already present for redshifts larger than z = 0.5 in the mr and the

hr. Nevertheless, also for the mr and the hr the main part of the population has

masses lower than 3 × 109 M�. The occurrence of black holes with masses larger

than 3× 109M� possibly results of difficulties according to the simulation of cooling

processes leading to the existence of too massive black holes. Considering the lower

limit of the lower masses points out, that in the uhr black holes occur with masses

lower than 106 M�, but accretion rates of more than ṁ = 10−14M�/s. According

to their mass, these black holes may be classified as IMBHs, and according to their

accretion rate they would be classified as AGNs (see Table 2.5). The presence of

AGNs that contain IMBHs in the simulation in contrast to observations may be a

result of anisotropic radiation. In particular, from Equation 1.34 it can be seen that

the estimate of the lower mass limit depends on the luminosity. For anisotropic

radiation this limit may increase, because the achievement of an equilibrium state

would be possible also for lower masses for a given luminosity depending on the

viewing direction. For the mr and the hr, all values for low masses are higher than

105 M�.

For the observed AGNs, the accretion rate is calculated to take a value between

10−14 M�/s and 10−6 M�/s (see Table 2.5). For all resolutions in the simulation,

the maximum values of the accretion rate are lower than or at least of the same

order of magnitude as the observed upper limit and stay under the Eddington limit.

The minimum values are for all resolutions lower than 10−14 M�/s. As a result, the
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Table 2.4: Mass ranges and accretion rate ranges for mr, hr, and uhr.

Resolution mr hr uhr
M•/M� 106 − 1010 2× 105 − 1010 2× 104 − 2× 108

ṁ/(M�/s) 10−16 − 10−6 10−16 − 3× 10−6 10−23 − 10−9

galaxies containing black holes with accretion rates lower than 10−14 M�/s would

not be classified as active galaxies.

Table 2.5: Characteristics of AGNs as given in (Schneider, 2008). ((1) L� = 3.8×
1033ergs/s.; (2) ṁ, in this case, was calculated by using Equation 1.35,
under the assumption ε = 0.1 and with the approximation, that the
whole luminosity in active galaxies is provided by the AGN.)

Radio galaxies Seyfert galaxies QSOs Blazars

L/L�
1 106 − 108 108 − 1011 1011 − 1014 1011 − 1014

M•/M� 3× 109 106 − 109 106 − 109 106 − 109

ṁ/(M�
s

)2 10−14 − 10−12 10−12 − 10−9 10−9 − 10−6 10−9 − 10−6
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Figure 2.1: Medium resolution: Accretion rate (ordinate) and mass (abscissa) of
the black holes together with the Eddington accretion rate (continuous
line) for several redshifts, using logarithmic scaling.

(a) z = 1.458 (b) z = 1.323

(c) z = 1.043 (d) z = 0.841
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(e) z = 0.726 (f) z = 0.672

(g) z = 0.293 (h) z = 0.000
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Figure 2.2: High resolution: Accretion rate (ordinate) and mass (abscissa) of the
black holes together with the Eddington accretion (continuous line)
rate for several redshifts, using logarithmic scaling.

(a) z = 1.980 (b) z = 1.706

(c) z = 1.179 (d) z = 0.841
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(e) z = 0.619 (f) z = 0.379

(g) z = 0.213 (h) z = 0.000
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Figure 2.3: Ultra high resolution: Accretion rate (ordinate) and mass (abscissa) of
the black holes together with the Eddington accretion rate (continuous
line) for several redshifts, using logarithmic scaling.

(a) z = 5.238 (b) z = 4.144

(c) z = 1.980 (d) z = 1.458
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(e) z = 1.179 (f) z = 0.963

(g) z = 0.672 (h) z = 0.470
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Discussion. In the description it was already mentioned, that in the mr and in

the hr three mass ranges exist. The intermediate range may also be described as a

gap. This gap separates the population into three groups, where two contain a high

number of black holes. The group or gap in between contains less black holes than

the other two groups. For the uhr this cannot be seen in Figure 2.3, but in Figure

2.7 at least a local minimum in the number of black holes per mass range may be

detected. This minimum extends from M• ≈ 8× 104 M� up to M• ≈ 2× 105 M�.

In figures 2.5, 2.6, and 2.7 the number of black holes per mass range for the mr, the

hr, and the uhr for several redshifts is given.

There is no way for black holes to loose mass. The only possible change in mass

is a growth due to accretion. Because of the fact that for all simulated black holes

at least a small accretion rate occurs, the change in mass has to be larger than zero

for all black holes, i.e. ∆M• > 0. The presence of three groups in the mr and in

the hr and the minimum in the number per mass interval for all redshifts and in all

resolutions in combination with a positive ∆M helps to analyze the typical behavior

of the black holes. This behavior concerns the growth of mass and the characteristic

accretion rate in the specific mass ranges. Thus it is correlated to the evolution of

the accretion rate. One problem for the significance of the analyze is, that there

is only a hint for the occurrence of three groups in the uhr, the minimum in the

number per mass range (see figures 2.3 and 2.7). One more problem is the mentioned

redshift-dependence of the typical accretion rate in the intermediate mass range for

the hr.

Despite these problems, the typical behavior, which can be seen in figures 2.1 and

2.2, of the simulated black holes, at least in the mr and for redshifts larger than 0.3

also in the hr, seems to be as follows: The values for the accretion rates for black

holes having a mass within the lowest mass range may take low and high values

in reference to the Eddington accretion for this mass range. For most black holes

having masses within the intermediate mass range the characteristic accretion rate

is evidently larger in reference to the Eddington accretion rate for this mass range

than in the low mass range. This leads to a faster growth of mass, than in the lower

mass range. Black holes with masses belonging to the highest mass range again have

lower characteristic accretion rates in reference to the Eddington accretion rate than

in the intermediate mass range. This again leads to a slower growth of mass in the

high mass range, than in the intermediate mass range. The combination of the

different temporal behavior concerning the growth of mass leads to the forming of
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Table 2.6: Calculated time slices for the individual resolutions.

Resolution ∆M•/M� ∆tcal/yr

mr 9× 107 8× 108

hr 9× 106 8× 108

uhr 9× 106 4× 108

a minimum in the number per mass range.

In order to check these assumptions concerning the behavior, the time slices for the

evolution within the intermediate mass range in the simulation should be compared

with calculated ones. The calculation of the time slice tcal was done with the help

of equations 1.37 and 1.38. Equation 1.38 can be transformed into:

∆tcal =
∆M•
ṁ′

, (2.1)

where ṁ′ is an approximation for the mean accretion rate within the investigated

mass interval ∆M•. In particular, it was calculated by the following equation:

ṁ′ = 0.1× 0.5× (ṁedd(M•,l) + ṁedd(M•,u)), (2.2)

where M•,l and M•,u stand for the lower respectively for the upper limit of the inter-

mediate mass range, 0.1 occurs in order to estimate the percentage of the accretion

rate as a function of the Eddington accretion, and 0.5 determines the middle of the

mass interval. The efficiency used for the calculation of the Eddington accretion rate

is 0.1. The calculated time slices for the increase of mass leading to the crossing of

the intermediate mass range are given for the individual resolutions in Table 2.6 in

combination with the corresponding mass interval.

The typical time for the crossing of the intermediate mass range is exemplary

determined by the analysis of Figure 2.4. This figure shows diagrams of the same

structure as shown in Figure 2.1, but for directly succeeding snapshots. In the

second and third figure, three black holes are marked. It seems likely to assume the

marked group of three black holes at redshift z = 1.458 to correspond to the marked

group at redshift z = 1.323.

In this case, it was possible to observe the evolution of a group. Because this is

not possible in many cases, when using diagrams as shown in figures 2.1 and 2.4,

the time slices have to be gained without observing individual black holes. In order
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Figure 2.4: Medium resolution: Accretion rate (ordinate) and mass (abscissa) of
the black holes together with the Eddington accretion rate (continuous
line) for directly succeeding snapshots, using logarithmic scaling.

(a) z = 1.706 (b) z = 1.458 (c) z = 1.323

Table 2.7: Index of snapshots, redshift, and corresponding time using data from
mr.

Snapshot Redshift z time/Gyr

from 040 1.706 2.11
to 048 1.323 2.65

from 072 0.783 3.94
to 088 0.568 4.78

from 116 0.252 6.70
to 124 0.174 7.38

to do this, one can note the redshift for two snapshots, where no or a small number

of black holes occur in the intermediate mass range. At least one snapshot has

to be given in between, containing many black holes in this range. As a result of

the occurrence of black holes in the intermediate mass range for a redshift between

the two noted redshifts, one can assume, that these black holes have crossed the

intermediate mass range in the corresponding redshift interval. The redshift can

be transformed into time by using Equation 1.14. In Table 2.7 the indices of the

snapshots, the redshift, and the corresponding time are listed for the mr.

Using the values listed in Table 2.7 we calculated, that it takes a black holes

between 5 × 108 yr and 8 × 108 yr to cross the intermediate mass range. This

is comparable at least in the order of magnitude to the time slices, calculated for

each redshift, listed in Table 2.6. This in combination with the positive ∆M• is
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consistent with the assumption, that in most cases a period of high accretion rates

exists following on a period of low accretion rates and again being followed by a

period of low accretion rates, when black holes transfer from the low mass range to

the high mass range because of accretion. Additionally to the fact, that the number

of black holes occurring in the intermediate mass range is lower than in the other

ranges, most black holes in this range seem to belong to AGNs.
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Figure 2.5: Medium resolution: Number of BHs per mass interval (ordinate) and
mass interval (abscissa) for several redshifts.

(a) z = 1.179 (b) z = 0.841

(c) z = 0.213 (d) z = 0.000
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Figure 2.6: High resolution: Number of BHs per mass interval (ordinate) and mass
interval (abscissa) for several redshifts, using logarithmic scaling.

(a) z = 2.335 (b) z = 0.901

(c) z = 0.213 (d) z = 0.033
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Figure 2.7: Ultra high resolution: Number of BHs per mass interval (ordinate) and
mass interval (abscissa) for several redshifts, using logarithmic scaling.

(a) z = 2.791 (b) z = 1.706

(c) z = 0.726 (d) z = 0.518
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2.2.2 Luminosity function

In order to investigate, which range of the accretion rate has high accuracy in

the simulation respectively which range describes observable phenomena best, once

again a comparison with observational data should be done. This classification of

simulated accretion helps to estimate the validness of the assumptions, made in Sub-

section 2.2.1 concerning the evolution of mass and especially of the accretion rate.

Nevertheless, only statements concerning the absolute number per luminosity inter-

val respectively accretion rate interval may be given by the comparison concerning

the luminosity function as a result of its definition. Thus no statements concerning

the composition of black holes per mass range are possible.

In this subsection, the calculated bolometric luminosity function is compared to

the luminosity function, described by Equation 1.42 for optical wavelength range.

As mentioned in Subsection 1.2.4, Equation 1.42 was gained by fitting observa-

tional data with parameters given in Table 1.2. Here the calculation of the bolo-

metric luminosity function for simulated data was done by using Equation 1.40.

The luminosity intervals dL are marked by an index n and calculated to be dL =

[10n × 1037ergs/s, 10n+1 × 1037ergs/s] with n ∈ 0, 1, ..., 12 (see figures 2.8, 2.9, and

2.10). The expansion of space was taken into account by using the following equa-

tion:

V =
a3

(z + 1)3
, (2.3)

where a = 48Mpc/h corresponds to the edge length of the considered box. In figures

2.8, 2.9, and 2.10 the luminosity function is plotted as a function of the luminosity

with the luminosity separated in intervals marked by n as described above. The

continuous line represents the fitted luminosity function and the crosses represent

the calculated one. In order to come to the accretion rate intervals, the luminosity

was converted into an accretion rate by using Equation 1.35.

Because of the resolution-dependence of the data, the comparison is once again

done for every resolution separately. It is important to note, that for the fitted lu-

minosity function only observational data for one type of AGNs (QSOs) were taken

into account. As a result, the calculated luminosity function for the simulation

might take higher values than the fitted one. This was taken into account when

looking for luminosity intervals where simulated data reproduce observations. I. e.

when the calculated luminosity function has higher values than the fitted one, the
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corresponding intervals were rather taken as reproducing the observation, than in-

tervals, where the calculated luminosity function has lower values, than the fitted

one, because for the fitted one only QSOs and for the calculated one all types of

AGNs were taken into account. The first two intervals in figures 2.8, 2.9, and 2.10

contain black holes with luminosities lower than 1039erg/s. As a result, these black

holes would not be classified as belonging to an AGN (see Table 2.5).

• Medium resolution. From Figure 2.8 we see the calculated luminosity func-

tion to be in good agreement with the fitted one for the intervals n = 5 and

n = 6 for all redshifts. In Table 2.8 the redshift, the luminosity interval and

the accretion rate interval are given. It turns out, that in the simulation the

luminosity interval extending from L = 1042erg/s to L = 1044erg/s describes

the observational data best. This luminosity interval corresponds to an accre-

tion rate interval from ṁ = 6× 10−12M�/s to ṁ = 6× 10−10M�/s. For lower

luminosities the calculated luminosity function has lower values than the fitted

one, and for higher luminosities, the calculated one has higher values than the

fitted one. I. e., the absolute number of simulated black holes in these lumi-

nosity ranges does not fit with observations, because the luminosity function

is correlated to the number of black holes per comoving volume element and

luminosity interval as it can be seen form Equation 1.40.

Table 2.8: Luminosity and accretion rate interval for the best description of ob-
served data by the simulation (mr).

Redshift Luminosity/(erg/s) Accretion rate/(M�/s)

3.38 − 0.00 1042 − 1044 6× 10−12 − 6× 10−10

• High resolution. The luminosity range reproducing observational data in

the simulation in this case seems to depend on the redshift. In Table 2.9

the different ranges are given with corresponding redshift interval. Figure

2.9 shows a diagram for each redshift interval. From Table 2.9 we see, that

the luminosity intervals respectively the accretion rate intervals describing

observations best shift to higher values and become wider as a function of

redshift. The broadest range extends from 1041 erg/s to 1045 erg/s for redshifts

between z = 3.38 and z = 1.81. This corresponds to accretion rates extending

from ṁ = 6×10−13 M�/s to ṁ = 6×10−9 M�/s. As for the mr, the calculated

luminosity function for low luminosities has lower values than the fitted one,
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while for high luminosities the calculated one has higher values than the fitted

one.

Table 2.9: Luminosity and accretion rate interval for the best description of ob-
served data by the simulation in dependence of the redshift (hr).

Redshift Luminosity/(erg/s) Accretion rate/(M�/s)

3.38 − 1.81 1038 − 1040 6× 10−16 − 6× 10−14

1.80 − 0.75 1039 − 1042 6× 10−15 − 6× 10−12

0.74 − 0.71 1040 − 1043 6× 10−14 − 6× 10−11

0.70 − 0.00 1041 − 1045 6× 10−13 − 6× 10−9

• Ultra high resolution. From Figure 2.10 we find the luminosity range de-

scribing observational data best to depend on redshift. In Table 2.10 the

luminosity intervals and the accretion rate intervals are listed with the cor-

responding redshift. The characteristics concerning the differences between

calculated and fitted luminosity function vary in comparison to the mr and

the hr. In this case, no typical discrepancy for high and low luminosities exists.

It turns out, that the difference seems to depend on the redshift. For redshift

larger than z = 0.73 most of the simulated values are higher than the observed

ones, and for redshifts lower than z = 0.73 most of the simulated values are

lower than the observed ones.

Table 2.10: Luminosity and accretion rate interval for the best description of ob-
served data by the simulation in dependence of the redshift (uhr).

Redshift Luminosity/(erg/s) Accretion rate/(M�/s)

3.00 − 0.74 1042 − 1045 6× 10−14 − 6× 10−9

0.73 − 0.40 1039 − 1045 6× 10−15 − 6× 10−9

Discussion. The comparison of the calculated luminosity function for the simula-

tion with the fitted one, gained by fitting observational data, pointed out accretion

rate ranges for each resolution describing observational data best. By comparing

the accretion rate intervals given in Table 2.8 with the overall accretion rate shown

in Figure 2.8 for the mr we see, that the simulation provides high accuracy in an

accretion rate range excluding accretion rates larger than ṁ = 6× 10−10M�/s and

lower than ṁ = 6× 10−12M�/s. For redshifts higher than 0.7 we come to a similar
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statement for the hr for high accretion rates by comparing the accretion rate ranges

given in Table 2.9 with the overall accretion rate shown in Figure 2.9. The upper

limit in this case depends on the redshift as shown in Table 2.9. For redshifts lower

than 0.7 high accuracy is given for high accretion rates up to ṁ = 6 × 10−9M�/s,

but not for low accretion rates lower than ṁ = 6× 10−13M�/s. The comparison of

the accretion rate ranges given in Table 2.10 with the overall accretion rate shown

in Figure 2.10 point out high accuracy in the uhr for accretion rate larger than

ṁ = 6× 10−14M�/s respectively ṁ = 6× 10−15M�/s depending on the redshift.

In general, inaccuracies in the description of black holes having low luminosities

respectively low accretion rates may result of the resolution. This can be seen by

comparing the lower limit of the accretion rate range providing high accuracy given

in Table 2.8 for the mr with the lower limits given in Table 2.9 for the hr.
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Figure 2.8: Medium resolution: Luminosity function (ordinate, using logarithmic
scale) and luminosity interval (abscissa) for several redshifts, the con-
tinuous line represents the fitted luminosity function and the crosses
represent the calculated one.

(a) z = 0.962

(b) z = 0.619
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(c) z = 0.335

(d) z = 0.000
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Figure 2.9: High resolution: Luminosity function (ordinate, using logarithmic
scale) and luminosity interval (abscissa) for several redshifts, the con-
tinuous line represents the fitted luminosity function and the crosses
represent the calculated one.

(a) z = 1.980

(b) z = 0.963
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(c) z = 0.726

(d) z = 0.252
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Figure 2.10: Ultra high resolution: Luminosity function (ordinate, using logarith-
mic scale) and luminosity interval (abscissa) for several redshifts,
the continuous line represents the fitted luminosity function and the
crosses represent the calculated one.

(a) z = 1.323

(b) z = 0.963
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(c) z = 0.726

(d) z = 0.470



Summary and conclusion

In Chapter 2 it was said that the growth of mass for black holes in the simulation

is primarily determined by accretion. Black holes in the simulation are generated

in the centers of galaxies with low masses relative to the mass range of the whole

population. Depending on the mass range the black hole is located in, the accretion

rates may take high or low values in reference to the Eddington accretion rate. The

classification of the mass ranges is different for each resolution, which is shown in

tables 2.1, 2.2, and 2.3. In the intermediate mass range, the accretion rate in general

is high, which leads to a rapid growth of mass. After crossing the intermediate mass

range the accretion rate decreases. This could be due to the fact that most matter

in the environment of the black hole in the center of the galaxy was accreted. The

minimum in the number per mass range, we see in figures 2.5, 2.6, and 2.7 results

of the rapid growth of mass in the intermediate mass range.

It is important to note once again that this behavior is only detectable in the

medium and the high resolution simulations for specific redshifts, but not in the

ultra high resolution. This difference between mr and hr, on the one hand, and uhr,

on the other hand, possibly results of the already mentioned difficulties concerning

the simulation of the accretion rate. In the uhr the evolution of black holes starts

with lower masses than in the mr and in the hr due to the given mass limit for

seeding. As a result, the evolution of the accretion rate in the uhr is not described

as good as in the mr and in the hr. This may possibly lead to the not-existence

of the intermediate mass range. This is a crucial challenge for the validity of the

demonstrated behavior of the black holes.

The comparison of the luminosity function gained by fitting observational data

with the calculated luminosity function for the simulated data shows, that the num-

ber of AGNs per luminosity interval and volume element in the simulation is in good

agreement with observations for particular accretion rate ranges. The consideration

of these ranges for the mr and the hr for redshifts lower than z = 0.7 shows, that

the occurrence of the minimum in the number per mass range does not influence the
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luminosity function for the luminosity ranges corresponding to these accretion rate

ranges with high accuracy. For the mr this can be seen by the consideration of the

accretion rate range, given in Table 2.8, in Figure 2.1, and in the hr this can be seen

for by the consideration of the accretion rate ranges, given in Table 2.9, in Figure 2.2

for redshifts lower than z = 0.7. This is of specific interest, because, if the minimum

would not exist in reality, especially in these accretion rate ranges, where only a

few black holes in the intermediate mass occur, the fitted luminosity function would

have higher values than the calculated one. One problem for the degree of reliance

of this statement is that for the hr for redshifts z > 0.75 the accretion rate range is

to low to issue a statement in this context. Furthermore, the consideration of the

data for the uhr does not allow statements concerning three different mass ranges.

One more problem concerning the occurrence of the minimum is, that the ranges of

high accretion rate are not described well in the medium and in the high resolution

for redshifts larger than z = 0.7. This can be seen by comparing the accretion rate

ranges given in tables 2.8 and 2.9 with the overall accretion rate shown in figures

2.1 and 2.2.

Conclusion. The investigation of the temporal development of black holes in

the centers of galaxies, on the one hand, yielded a concept for the evolution of the

mass and the accretion rate for growing black holes. On the other hand, evidence

were given, that the evolution leads to a minimum in the number per mass range

not detectable in the luminosity function. As a result of the problems, especially

concerning the uhr, further investigation, also including the reliability of the uhr, are

absolutely necessary to check these conclusions before reliable predictions concerning

the number of AGNs per mass range may be given.
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Appendix

Fundamental physical constants and other measured variables:

• Elementary charge: e = 1.602× 10−19C

• Gravitational constant: G = 6.673× 10−11m3kg−1s−1

• Speed of light: 299, 792, 458ms−1

• Vacuum permittivity: ε0 = 8.854× 10−12Fm−1

• Stefan-Boltzmann law: σSB = 5.671× 10−8Wm−2K−4

• Thomson cross-section: σT = 6.652× 10−29m2

• Solar mass: M� = 1.989× 1030kg

• Solar luminosity: L� = 3.8× 1033ergss−1
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