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Introduction

There are two possibilities for stars to reduce the amount of hydrogen in their atmospheres: 

High mass stars produce so-called Ring Nebulae whereas low mass stars produce Planetary 

Nebulae. What they have in common is that one can see a Wolf-Rayet spectrum below the 

photosphere caused by dense and fast winds that generate stellar wind bubbles around the 

stars. This spectrum shows bright emission lines.

     Planetary Nebulae show overarching symmetries but in Ring Nebulae one can observe an 

irregular filamentary forms produced by different velocities of the wind. Those stellar wind 

bubbles can be parted in two types. On the one hand one has the radiative type which is also 

called the momentum-driven type and on the other hand obviously the non-radiative type. 

Which kind of stellar wind can be found depends on the cooling system. The high metallicity 

found in stellar winds of massive stars often implicates bigger radiative cooling rates but not 

only that factor but also certain time scales determine whether one has a radiative or non-

radiative stellar wind bubble. To be more accurate the type is set by the crossing time for the 

free wind t cross , the age of the bubble t and the cooling time t cool .

     If the cooling time is much smaller than the crossing time ( t cool≪tcross ) for the free wind 

the bubble is radiative. On the other hand if the age of the bubble is much smaller than the 

cooling time ( t≪tcool ) the bubble is non-radiative. Bubbles can also be partially radiative. 

That's the case if t cross≪tcool≪t so that the cooling has an affect on the wind but at the same 

the time bubble is almost everywhere full of hot shocked gas. If such a shocked wind is found 

the bubble is energy-driven otherwise it's momentum-driven.

     Although a focus will be set on the high mass stars in the following text there now will be a 

short  overview of  Planetary Nebulae  of  low mass  stars,  too.  Those  stars  are  carbon-rich. 

Observing the atmosphere of the stars one can see that the mass loss rates are about ten times 

higher in comparison to normal stars although the velocity of the wind there is just like that in 
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normal central  stars.  The evolution of the stellar  wind especially in the Asymptotic  Giant 

Branch-Phase  is  not  understood  yet  but  according  to  Dwarkadas  and  Balick  (1998)  the 

evolution of fast wind follows this relation:

vfw=v fw01 t
 



Here the initial velocity v fw 0 is 25 km s−1 and =1.5 . At last  is set so that at t = 

3000 yrs v fw is equal to 2000 km s−1 . 

     For a radiation-driven wind the mass loss changes in a way so that  Ṁfw vfw is always 

constant. Although one can say something about the transition velocity no one can make a 

statement about the transition time as the flow of the wind is not well understood.

     More interesting now is the behaviour of Ring Nebulae. Numerical experiments from 

Garrelt  Mellama and Peter  Lundqvist  (2002) who worked with winds  running into a Red 

Super  Giant  wind which  has  the effect  that  the otherwise complicated  description  can  be 

handled now like the model for Planetary Nebulae – only with higher mass loss rates – showed 

that winds from cooler nitrogen-rich stars  switch from momentum-driven to energy-driven 

types. Hotter nitrogen-rich stars as well as carbon-rich stars (both hotter and cooler types) are 

energy-driven from the start.

     In order to say something about the type of wind one can also examine momentum and 

kinetic energy of the shell and compare it with the energies given by the stellar wind. Here the 

ratio of shell momentum to wind momentum is  :

=
Mshell vshell

Ṁfw vfw t

an the ratio of kinetic energies of shell and wind is  :

=
Mshell vshell

2

Ṁfw vfw
2 t

For both ratios the velocities of slow winds are close to zero which may not be correct since 

often Ṁfw vfw~Ṁsw vsw .
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An exact ratio for the energy-driven case is not easy to be estimated as the expansion velocity 

is difficult to describe. However as long as Ṁfw v fw
2 ≪Ṁsw vsw

2 is valid we have

e≈
1
3

vfw

vs, e
1

3
v fw vsw

vs , e
2

e=
1
3
1

3
vsw

vs ,e 2 vsw

vs , e
as vs ,e= 1

3
Ṁfw

Ṁsw
vfw

2 vsw
1 /3

.

For the momentum-driven types the ratios can exactly be given:

m=
vfw

v fwvs , m
vsw

v fw−vs ,m−vsw

vs ,m v fwvs , m
2

m=
vfw vs, m

vfwvs ,m 
2vsw

vs ,m2vfw−vs , mvswvfw−2 vs , m−vsw

vs ,m v fwvs ,m
2

with vs , m= Ṁfw

Ṁsw
vfw vsw .

A partially radiative character of the stellar wind bubble reduces the values for  and  .

     Although Planetary Nebulae show big symmetries the non-linear instability of the thin shell 

can lead to a fragmented nebula, which can also show a substructure of fragments. In Ring 

Nebulae  the  inhomogeneity  of  stellar  winds  cause  areas  of  different  temperatures  and 

densities. Those parts show a behaviour of dropping temperature and raising density.
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1. Theoretical Basis

1.1 Interstellar medium

Gas found in the interstellar medium in the shape of hydrogen can be parted in two types: 

atomic and molecular gas. Depending on what kind of type is found the appearance is diffuse. 

The density of hydrogen isn't very high if the gas is atomic. If the gas is molecular, one can 

observe a rather irregular and fragmental look with dense and cold gas. The Giant Molecular 

Clouds are the largest objects hold together by self-gravity between different galaxies. Their 

maximum size amounts to about 100 pc with a maximal mass of 106 Msun . The question 

what the smallest size could be is more difficult to answer since there are no clear effects like 

the galactic shear, that takes action as a too great potential in a galaxy causes tidal forces. 

Observations however led to the assumption that 10 – 20 AU (astronomical units) might be the 

minimum of size for molecular clouds. Whether there are smaller shapes or not can't be said 

yet because the instruments used to investigate the interstellar medium don't have a sufficient 

resolution and they aren't sensitive enough yet.

     Furthermore so-called “extreme scattering events” (ESE) of radio sources – events in 

which the flux density of e. g. quasars drops by a big amount for multiple weeks or even 

months – disturb the formation process of molecular clouds. The number of such disruptions is 

by a  factor  of 103 higher  than  the  number  of  stars  of  a  near  galaxy.  Then why are  the 

structures of those molecular clouds so stable and have a comparatively long life time? Walker 

and Wardle tried to answer this question with the idea of  self-gravity. If the clouds then really 

are  gravitationally  bound,  they  would  have  a  mass  of  about 10−3 Msun with  an  average 

density around 1010 cm−3 . These would be the smallest structures theories could foretell. If 

these suggestions are right then the range of size and masses would be at orders of 6 (for size) 

and 10 (for masses).
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     However observations and simulations of Dobbs, Burkert and Pringle (2011) showed that 

most of the molecular clouds in the interstellar medium aren't all over gravitationally bound. 

Of course self-gravity is crucial for star formation so how can this statement be right? The 

answer is that clouds are only gravitationally bound  to a certain degree of at most 30% of the 

volume where the gas is dense enough for star formation.

     Motivation for this assumption can be found by considering the virial theorem or more 

precisely the virial parameter  :

=
5 v

2 R
G M

v is the line of sight velocity dispersion and R the radius of the cloud. For =1 which 

means there is  virial  equilibrium the virial  theorem would be 2TW=0 where T is  the 

kinetic  and  W the  potential  energy.  So  the  variance  of  can  say  something  about  the 

influence of gravity in a molecular cloud an hence something about the cloud being bound or 

not.

    Observations showed that, for most of the clouds,  is different from and bigger than 1. 

With that unbound and turbulent molecular cloud, where 1 and even 2 there would 

be no star formation all over the cloud's volume but only at some special parts where the 

density of  hydrogen is  large  enough.  Simulations  from Bonnell  et  al.  (2010)  showed that 

stellar clusters really formed in bound regions. In addition simulations from Dobbs, Burkert 

and Pringle (2011) showed that molecular clouds with star formation efficiencies of  = 5

or 10% are nearly everywhere unbound and values for  are in agreement with observations. 

Clouds with  = 1 per cent are mostly bound and have higher masses which doesn't fit with 

observations.
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1.2 Turbulence

Turbulences  in  molecular  clouds  are  an  important  factor  for  formation  processes  in  the 

interstellar medium. One quantity to estimate how turbulent the clouds are is the Reynolds 

number R e :

 R e=
vl


with v the velocity, l the characteristic linear dimension and  the kinematic viscosity. If

R e≫103 then the medium is said to be turbulent. Typical for turbulence is a fluctuation of 

density as well as pressure and the presence of many whirls. An estimation for the viscosity 

can be done if the macroturbulent velocity or the dispersion and the the mean-free-path of 

cloud-cloud collisions are known. Observations showed that the Reynolds number lies around 

109 and thus the interstellar medium is highly turbulent.

     The so called Larson relations as a sign for the Kolmogorov cascade give a picture where 

energy causes heat in low scales and is injected in large scales. If the energy transfer rate

v2/ r /v  is constant then

v∝ r1/3

This relation is close to what observations show. As a source of energy at large scales the 

galactic rotation and shear could be possible. Different factors like the interstellar medium 

being supersonic and thus dissipative as well as the possibility of energy being provided by 

stellar formation could lead to the relation

v∝ r 1/2

known as the Burgers spectrum. To what amount magnetic fields are important isn't sure as 

observations  show  a  equipartition  of  magnetic  and  kinetic  energy.  Because  of  that  the 

magnetic field is a important factor for energy exchange but on the other side it has no effect 

on cloud collapse or gravitational instabilities.
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   Strong fluctuations of density (and also velocity) in the interstellar matter play a important 

role as the chaos one sees at first sight is no disorder without any chance to look through it but 

there is a great order within the chaos making it possible to get a self-similar structure over 

some orders of magnitude in mass and scale. The correlation functions then act like power-

laws where the correlation length is infinite.

     With the size-linewidth relation ∝R1/2 and the observed scaling law of ∝R−1 then 

one can say:

∝−1 /2

and as the turbulent pressure P is defined as

dP
d 

= 2

and with that

P∝log

1.3 Determining the fractal dimension

The main part of molecular gas in the interstellar medium gets its material from expanding and 

sometimes colliding shells produced by stellar wind and supernovae. Most of it is found in 

molecular clouds and its structure – as observations have shown and is mentioned above – is 

very  fractal  and  clumpy.  There  are  also  irregular  substructures  so  –  if  you  make  a 

approximation and say that to a certain degree those structure show self-similar behavior in 

wide ranges (down only to certain scales where specific boundary effects appear) – you can 

calculate its fractal dimension. The idea of fractals was first introduced by Mandelbrot in 1982 

in order to make statements about the homogeneity of systems like molecular clouds and to 

describe what fraction of space is filled (here with hydrogen).The fractal geometry of such 

clouds which is due to turbulences and – as some assume – self-gravity affects the evolution of 

structures in the interstellar medium.The method of how the fractal dimension is calculated 

will be explained later but for now there will be given an overview of what one can get by 

knowing the fractal dimension.
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     As one can only observe the surface of  molecular  clouds  there can only be given a 

dimension of the fractal structure with a maximum of 2. The relation of the dimension of those 

cloud-projections to the three-dimensional ones is not known yet but it could be something 

about D per1 . D per here is the fractal dimension of the projected cloud calculated by the 

perimeter-area method. Although this method is not used for getting the fractal dimension of 

the simulation used for this thesis there will be a explanation of what it is since it can give a 

good orientation for checking whether the calculated dimension is in an acceptable range. “if 

the isocontours exhibit a power-law perimeter-area relation with a noninteger exponent over a 

certain range of scales,  this exponent may be interpreted in terms of fractal  dimension...”1 

Some people such as Elmegreen and Falgarone (1990) confined values of D per to a range of

1.2 Dper  1.5 and especially D per=1.35 and so Df=Dper1=2.35 .

     The projected dimension of a fractal with actual three-dimensional arrangements has a 

maximum of 2 so one can say:

D pro=min {2, Df }

as Df is the three-dimensional fractal dimension of the projected structure. Perimeter P and 

area A here follow the relation:

P ∝ ADpro/2

     Compared  to  that  there  were  made simulations  and calculations  of  also the  average 

correlation and mass dimensions of the projections.

For both methods r is the size of cells of a grid laid over the projection. 

     The correlation dimension is given by

DC=lim
r0

logC r 
log r

where C(r) is the correlation integral:

C r = 2
NpN p−1 ∑

1i jNp

H r−∣x i−x j∣

1 Néstor Sánchez, Emilio J. Alfaro, Enrique Pérez: “The fractal dimension of projected clouds”, 2005



9

Np is a set of points with position x and in the summation there is count the number of pairs 

where ∣x i−x j∣r while H is the Heaviside step function.

     The mass dimension follows a more simple law:

M  r ~rDM

A focus  will  be  set  on this  kind  of  dimension  later  on as  the parameters  given from the 

simulations that were used for this assignment show the density distribution of hydrogen in the 

wind-blown superbubbles.

     Using these methods the results for the values of Df are now Df≈2.6±0.1 . So by 

knowing the fractal dimension one can make statements about the distribution functions of 

size and mass of the clouds and moreover, about the initial mass function of the centered star.

Figure 1: from http://mathworld.wolfram.com/HeavisideStepFunction.html; Heaviside 
step function
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1.4 Disturbances

Theoretically determining the fractal dimension by using the perimeter-area dimension method 

and the mass-size dimension method is an acknowledged method. Different factors however 

influence the values one gets for the fractal dimension. Those factors are opacity and noise 

observed in the interstellar medium.

     While opacity has no influence on the output of Dper there will be a different result for the 

mass dimension Dm as it gets bigger as opacity grows. In addition the estimation of D per is 

influenced by the resolution of the observed fractal as well as by the emission of the cloud as 

particles closer to an observer hide from the back side of the cloud. However since we use 

simulations those problems won't be handled in the following text.

Opacity

Simulations of earlier fractals in the interstellar medium were done under the approximation of 

an optically thin cloud as there was made the assumption that every particle behaves like 

another one. What happens to the estimation of the fractal dimension if this approximation 

isn't set anymore will be shown now. Contributions are weighted by exp [−x ,y ] for the 

plane z=z0 where

x , y = c∫
z0

z

x , y , z dz

is the total optical depth between the point (x,y,z) and the projection plane. In the absorption 

constant c there are some parameters like the mean molecular weight or the abundance of the 

emitting molecule contained.  The maximum optical depth 0 for the case that the complete 

mass Mf is homogeneously distributed in the outright usable volume

V f=
4
3
R f

3

is for Mf=1 and R f=1 :
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0=
3c
2

The total  optical  depth then is close to 0 because it  is a function of the position in the 

observed area. So for example ≈0.9 for 0=1.0 and ≈1.7 for 0=2.0 . How does 

this  influence the assessment of Df ? In order to say something about that  we now look 

again at the parameter-area based dimension and the mass dimension. 

     Using the method of determining D per mentioned above calculations have shown that

Dper isn't  affected by the opacity and that discrepancies always lie in line with expected 

degrees. The  following  figure  shows  that  for  different  threshold  intensities  –  where  the 

intensity of pixels are above this threshold – the fractal dimension (represented by the fitting 

line's slope) is always nearly the same. 

Figure 2: from Sánchez et al. (2005); perimeter plotted against the 
area in both logarithmic ways; the slope (and with that the fractal  
dimension) is nearly the same for both total optical depths. The 
intensity levels are fixed at 25% (crossed symbols), 50% (open 
symbols) and 75% (filled symbols) of the maximum intensity.
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     For higher thresholds one can examine smaller and denser structures, but very dense parts 

can hardly be detected because opacity covers the structure near such cores. Nevertheless, as 

we have only one fractal examined the properties of this fractal are the same and so the fractal 

dimension and with it the perimeter-area based dimension is not affected by the opacity.

     That is different for the mass dimension method. As to say something about the mass 

dimension, one needs to know how the particles are distributed at every point of the cloud (cf. 

M(r)). Without this parameter it will not be possible to give a good estimation of Dm . So 

the  inner  and dense regions  – which could as  mentioned above be  occulted  by the outer 

regions and projections – are important for determining M(r). Observations have shown that

Dm increases as 0 grows. Bigger 0 bring about shorter dynamical ranges of intensities 

and the estimation of Dm becomes already worse at a value of 01.3 .

Noise

Depending on how strong the emission lines of a fractal bubble are there are low or high 

signal to noise ratios S/N. Following Vogelaar und Wakker (1994) there has been evidence 

that contours of fractal stellar clouds – especially for smooth clouds – are distorted by noise 

and because of that the value one gets for D per increases as there is more noise producing 

irregular structures. In order to have an overview on how D per and also Dm are affected by 

the noise there can be used  as the size of the neighborhood region so as to smooth areal 

irregularities so that one can say how D per and Dm depend on the noise in a molecular 

cloud.  Calculations  and simulations  showed that  for  growing regions  D per decreases 

and Dm rises as long as the sound to noise ratio S/N isn't too big.
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     Again, in order to calculate D per there a certain number of intensity levels can be used. 

Although the lower ones are disturbed by noise for a high S/N ratio there will be nearly no 

effect on determining D per  as all levels are examined and so in the final result the noise only 

contributes to a small share. That's different for fractals with a low sound to noise ratio as 

there the intensity levels and the noise levels don't differ very much. Also the fringe of the 

molecular clouds could be elongated and thus the result for the perimeter dimension might be 

higher than expected.  One way to solve this problem is to smooth the maps of fractals and 

flatten the noise of pixels that lie next to each other. The danger in using this method is that 

one could overdo this smoothing process and so the value for D per becomes too low. 

Figure 3: from Sánchez et al. (2005); mass dimension (Dm) and perimeter  
dimension (Dper) in dependence of the smoothing parameter  ; the 
dashed line shows the point where the contrast has its maximum.
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     In addition determining the mass is very difficult because hydrogen molecules don't radiate 

as long as they are cold and furthermore, they are symmetric and have no dipole moment. A 

possible tracer would be the molecule CO, but the exact ratio to the number of hydrogen 

molecules (something around 10−4 ) isn't known yet. Moreover, it is either photo-dissociated 

or optically thick. Nevertheless, there is a possibility to get a relation between this parameter 

and the radius of the molecular cloud. Using the size-linewidth relation – or equivalent to the 

line-width the velocity dispersion  following power-law can be used

∝Rq

with 0.3q0.5 .

     Assuming the molecular clouds are virialised then one can say:

2∝ M/R

and thus

M∝RD

where D is the Hausdorff fractal dimension in a range of 1.6 to 2.
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2. Box-counting method

There are different possibilities for calculating the Hausdorff dimension. One way is the so 

called box-counting method. In order to give a motivation for calculating this parameter there 

will be a definition of what self-similarity is as self-similarity is one crucial attribute of fractal 

objects  such  as  regions  where  two wind-blown superbubbles  collide  as  those  happenings 

contribute to a important share to the formation process of the fractal molecular clouds. For 

explaining the self-similarity the so called Koch curve will be used as an illustrative example. 

In order to generate a Koch curve one starts with a one dimensional line. This line will be 

divided into three equal parts and the middle part will be removed and replaced by two sides 

of a triangle with the same length as the removed part. Now this process will be repeated for 

the four sides one got in the first step and following this procedure for the next 16 sides and so 

on.

Figure 4: from 
http://www.nd.edu/~jcaine1/mathematics/limits_cha
os.html; generating the Koch curve
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 Doing this infinitely often one gets the Koch curve:

Now self-similarity means that for different scales the examined part of this curve looks just 

like one another so as you zoom in the structure you will always see the same shape. In order 

to say something about its fractal dimension the concept of dimension will be explained itself. 

Examining for example lines, squares and cubes, which are all self-similar objects there can be 

given a quite good explanation.

     By parting a line in e. g. 8 pieces of same length one has to magnify one of these parts by 

the factor of 8 in order to get the initial line. Same goes for 10 parts where one segments 

length  has  to  be  multiplied  by  10  to  get  the  initial  line.  For  100  or  for  N  parts  the 

magnification factor  would be 100 or  N.  A square in contrast  which is  parted in  4  equal 

squares has a magnification factor of 2 since the sides spanning the square have to be doubled 

in length in order to achieve the initial square. If the square was decomposed in 49 equivalent 

squares,  the  magnification  factor  would  be  7  and  for N2 parts  it  would  be  N.  Same 

procedure will lead to a relation of N3 sub-cubes for a magnification factor of N if a cube is 

examined. Thus the dimension is the exponent of the number of self-similar pieces associated 

with  the  magnification  factor  N.  So  the  (Hausdorff)  dimension  can  be  calculated  in  the 

following way:

D= log number of self−similar pieces
log magnification factor 

Figure 5: from http://www.jimloy.com/fractals/koch.htm; Koch curve
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For e.g. a square this would be:

D =
log N2
log N

=
2 log N 
log N

= 2

     Examining the process of how the Koch curve is made its dimension will be different from 

1 the line has in stage 0 but it won't be 2 either as there isn't generated a plane object. One way 

to calculate its (fractal) dimension is the so called box-counting method. Using that the Koch 

curve will be covered by squares whose side length will get smaller and smaller (decreased by 

always the same factor)  and then the number of boxes with self-similar structures will  be 

counted. The box-counting dimension can only be calculated if there is a constant c > 0  so 

that

lim
L0

NL
1/LD = c

where L is the box' side length and l := 1/L is the magnification factor. With that D is (cf. 

Definition of dimension written above)

D = lim
L0

log NL
log 1/L

Figure 6: from 
http://classes.yale.edu/fractals/fracanddim/boxdim/Koc
hBoxDim/KochBoxDim.html; Koch curve covered by 
smaller and smaller boxes
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For the example of the Koch curve it is

Length of box L (Length of initial line =1)  Number of boxes N
1 1
1/3 3
1/9 4⋅3
1/27 42⋅3
1/81 43⋅3

1/3n 4n−1⋅3
Hence the fractal dimension can by calculated in following way:

D = lim
L0

log N L
log 1/L

= lim
n∞

log N L
log 1/L

= lim
n ∞

log 4n−1⋅3
log3n = = log 4

log 3
≈ 1.26

     In reality there are some factors such as a limited resolution – thus the boxes size can't get 

infinitely small – and the fact that structures aren't perfectly self-similar cause that the formula 

above  can't  be  used  in  a  satisfying  way.  Nevertheless,  there  is  a  way to  get  the  fractal 

dimension of structures like the fractal molecular clouds: By plotting the logarithm of the 

magnification factor against the logarithm of the number of boxes with structures the slope of 

a fitting line between the different data points indicates the fractal dimension of the observed 

object.
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3. Fractal dimension

3.1 Simulations

Based  on  simulations  from Ntormousi,  Burkert,  Fierlinger  and  Heitsch  (2010)  who  have 

simulated the hydrodynamical collision of two windblown superbubbles in an uniform as well 

as in a turbulent diffuse medium the fractal dimension for a section of the meeting area of the 

colliding region (turbulent case) will  be observed.  For the simulation there were set  some 

constraints due to computational limits (cf. Ntormousi, Burkert, Fierlinger and Heitsch,2010):

1. The stars  belonging to the investigated arrangement all  arose at  the same time. 

Time metering starts at the point were stars format in wind areas.

2. The two superbubbles start to expand simultaneously.

3. Metallicity is solar.

4. There is no external gravity field and no self-gravity of the gas.

5. The  spacial  distributions  of  stars  are  regarded as  one  uniform source  with  are 

region radius of 10 pc.

6. There are initial turbulences by the use of a turbulent velocity field.

7. The rout mean square (rms) Mach number is ≈ 1 so the turbulent kinetic energy 

is equal to the thermal energy of the gas.

8. The driving of turbulences are neglected as the turbulence crossing time in the 

diffuse medium is with 86 Myr  much longer than the calculations time so there are 

almost no energy losses.
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The centres of the expanding superbubbles are 500 pc apart and the simulation time will go up 

to 7.1 Myr.

Figure 7: from Ntormousi et al. (2010); 
superbubble collision-snapshot for t = 3.0 Myr; 
the axis' unit is pc

Figure 8: from Ntormousi et al. (2010); 
superbubble collision-snapshot for t = 7.0 Myr; 
the axis' unit is pc
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The observed part of the simulation will be the middle box shown in the following Figure: 

Figure 9: from Ntormousi et al. (2010); snapshot for t  
= 5.3 Myr; the plot shows the hydrogen density; the 
axis' unit is pc
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Out of the time steps for 4.3, 4.6, 4.8, 5.2, 5.4, 5.7, 6.0, 6.4 and 7.1 Myr where snap shots were 

made, there will be a arbitrarily set focus one the simulation at the time steps of t = 4.8, 5.2 

and 6.4 Myr.

Figure 11: zoom-in snapshot of superbubble collision for t = 5.2 
Myr; shown is the hydrogen density; the axis unit is the number 
of datapoints used

Figure 10: zoom-in snapshot of superbubble  
collision for t = 4.8 Myr; shown is the  
hydrogen density; the axis unit is the number 
of datapoints used
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Analyzing the development of the cooling gas' density in the box the following statements can 

be made: The observed gas contained in the first box at t = 4.3 Myr expands as time goes on 

and  the  matter  will  agglomerate  so  the  gas  will  have  more  and  more  clumps.  The 

fragmentation process occurs due to different instabilities:

Nonlinear thin shell instability (NTSI): According to Vishniac (1994) dense shells that cool  

due  to  radiative  processes  aren't  influenced  by  linear  perturbation  but  are  very  

instable to the non-linear ones. If the movement of the shell is larger than the thickness 

of  the disk momentum is  taken  away from the  shock of  two colliding flows and  

moved towards trailing regions of the shock. Thus the shell will expand  in an unstable 

way.

Kelvin-Helmholtz  instability:  Stratified  flows  show  a  instable  shear  layer  after  a  flow  

separation if the flow hits a blunt object or if two different immiscible liquids or gases  

with  different  velocities  have  contact  with  each  other.  Its  spatial  and  temporal  

expansion is described by the Kelvin-Helmholtz instability.

Thermal  instability:  On timescales  shorter  than  the  dynamical  timescale  of  a  cloud it  is  

possible to have cooling instabilities that can bring forth a pressure gradient what in 

turn causes a gas flow from areas with low density to such with high density. As a  

result of that density perturbations increase by a big amount.

Figure 12: zoom-in snapshot of superbubble collision for t = 6.4 Myr; shown is the 
hydrogen density; the axis unit is the number of datapoints used
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3.2 Fractal dimension for different thresholds of density

As not only the chronological development is interesting there will be analyzed the fractal 

dimension for different thresholds of density starting with the simulation snapshot for t = 5.2 

Myr. Haphazardly chosen thresholds are log nHcm−3=0.5 and 2.0. 

The upper image shows the gas' structure where the density is higher than the set threshold 

(black areas are those where the density is below the threshold) and the lower plot shows the 

calculated fractal dimension (slope of the line of best fit) by using the box-counting method. 

Figure 13: density plot for threshold
log nH cm−3=0.5 at t = 5.2 Myr (up); below: box-

counting plot with the value of D(slope)
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Note that the particle density says something about how many particles there are in a box so 

that the number of boxes with (self-similar) structures can be counted.

Figure 14: density plot for threshold log nH cm−3=2.0 at t = 
5.2 Myr(up); below: box-counting plot with the value of D(slope)



26

As the two plots are compared (and also the plots for the other thresholds) there can be seen 

especially one trend: As the threshold for the hydrogen density of the molecular gas rises, the 

calculated fractal dimension decreases. This development is apparently correct as for a greater 

threshold there is more and more structure containing gas taken away from the initial two-

dimensional area where every point was considered to be filled with gas. As a result the fractal 

dimension decreases from a value of to 2 down to a value near (but bigger than) 1. Now what 

is interesting is the way of how the value decreases:

Examining this plot there could be made following assumption if there was a superimposed 

curve that would give a good estimation for the behaviour of the plot's points:

Df ∝ −ec⋅th

where c is a constant that may be calculated in future assignments and th is the hydrogen 

threshold. 

Figure 15: the fractal dimension plotted against the density threshold 
for t = 5.2 Myr
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Comparison with e. g. the simulation snapshot for t = 6.4 Myr as well as with other time steps 

shows  that  this  behaviour  is  similar  for  each  case.  Threshold  plots  are  here  shown  for

log nHcm−3=1.0 and 2.0.

Figure 16: density plot for threshold log nH cm−3=1.0 at t = 6.4 Myr (up);  
below: box-counting plot with the value of D(slope)



28

Figure 17: density plot for threshold log nH cm−3=2.0 at t = 6.4 Myr(up);  
below: box-counting plot with the value of D(slope)
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     One interesting question now would be if this behaviour is valid for simulated fractals in 

the  interstellar  medium matches  with  the  behaviour  of  molecular  clouds  being  observed. 

Future research could give an answer to that interesting question and with showing to what 

extend the simulations are in agreement with the observed data there can also be done even 

better estimations of how close the assumption for the simulations are in comparison to reality.

     For the sake of completeness there can be found plots of the simulations with different 

thresholds of density for each time step in the appendix. In addition, there was also a figure 

added, where the fractal dimension is plotted against the threshold. 

     Attention should be payed to the fractal dimension for big thresholds. At some plots there a 

fractal dimension < 1 can be found although the fractal dimension is supposed to be near but 

greater than 1. That's because,e despite there are more and more clumped regions considered 

there will never be attained a structure that resembles something similar to a one-dimensional 

line. So why are there values for D < 1? The reason for that can be found in the narrowness of 

the resolution. The boxes size can't get infinitesimally small and so a correct analysis of the 

number of boxes were gas can be found isn't possible.

Figure 18: the fractal dimension plotted against the density threshold for t = 
6.4 Myr
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3.3 Comparison to area filled with gas

As the fractal  dimension can be a estimation for the complexity of a (almost)  self-similar 

structure and as it can say something about how filled an observed area is it is also interesting 

to  investigate  the ratio  of the area where gas  can be found to  the total  area examined in 

dependence of the threshold of hydrogen density. Note that the plots for the area-orientated 

analysis start for log nHcm−3=0.0 as the fractal character starts to get interesting only at 

this point though there are areas of density with log nHcm−3 down to -3.0.

Figure 19: ratio of area filled with gas to total area in dependence of the density threshold
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Using the example of the snapshot for t = 6.4 Myr (cf. Figure 12) one may notice, that the 

fractal dimension doesn't change by a big amount, although, there are big changes in the ratio 

of area with structure to the total area – don't forget here that the y-axis is logarithmic, too, so 

the apparent resemblance of the two plots doesn't give a clear relation between area a fractal 

dimension. In those two examples the value for the fractal dimension lies always around 1.8 

for t = 4.8 Myr or respectively 1.7 for t = 6.4 Myr (for thresholds between about 0.0 and 2.0) 

where the ratio of area with structure to the total area changes by a factor of ≈ 10 .  To 

confirm if  this  is  true  for  filaments  observed  in  the  universe  or  not  might  be  a  task  for 

subsequent research.

     As a consequence the fractal dimension is a utile quantity that examines the filamentary 

structure even if the density varies a lot and even hence if it is difficult to exactly describe the 

density distribution of the area where the two superbubbles collided.
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3.4 Fractal dimension over time

As there has been an analysis for the fractal dimension at a set time segment, but with variable 

thresholds  of  hydrogen  density  there  will  now  be  examined  how  the  fractal  dimension 

develops  with  proceeding  time but  constant  threshold  of  density.  Therefore,  there  will  be 

shown  figures  for log nHcm−3 = 0.5 and  2.0  where  the  fractal  dimension  is  plotted 

against the time that has gone by.

Figure 20: fractal dimension as time goes on; logarithmic density threshold = 0.5
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In the plots one can see that the fractal dimension tends to increase for the first time steps – 

starting from t = 4.3 Myr up to 4.8 Myr. An explanation for this behaviour is that in the early 

phase after the collision of the two superbubbles the hydrogen gas only moves on and that the 

clumping process hasn't fully started. So there is no fractal appearance that can be comprised 

by the calculation of the fractal dimension of the gas. After this first time interval – for the 

time interval from approximately 4.8 Myr to 6.4 Myr – the curve sinks, revealing the fractal 

shape  of  the  filamentary  gas.  Here,  the  value  of  the  fractal  dimension  decreases  as  the 

hydrogen clumps together building the fragmental structure observed. The smaller values of D 

show that the collision zone of the two superbubbles shows a more and more fractal look. 

Finally  (as  of  6.4  Myr)  the  fractal  dimension  increases  again  for  late  times.  The  reason 

Figure 21: fractal dimension as time goes on; logarithmic density threshold = 2.0
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therefore is that the gas that didn't clump disperses making the total picture more plane even at 

different thresholds.

     In conclusion, there will be a shown a plot where all the curves of fractal dimensions in 

dependence of the elapsed time for the different thresholds in one figure. Here one can see that 

the behaviour of the curves described above is valid for all thresholds. The discrepancy for the 

threshold log nHcm−3 = 3.0 is  due  to  the  problem of  the  limited  resolution  that  was 

already mentioned. In the plot you can also see the behaviour of decreasing values for the 

fractal dimension as the density threshold rises that has been shown in 3.2.

Figure 22: fractal dimension for ongoing time at different thresholds of hydrogen density
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Summary

The interstellar  medium as it  is observed gets  its  material  – especially hydrogen, but also 

helium –  from wind blowing (or  exploding)  stars  of  spectral  class  OB as  a  reduction  of 

hydrogen in their atmosphere is intended. Those winds that might be momentum driven in the 

start, but then change to the energy driven type show non-linear behaviour and – combined 

with turbulences in the shell and cooling instabilities – generate turbulent initial conditions 

that lead to a fragmentation of the hydrogen superbubbles blown away from the stars. Those 

turbulences – as well as the extreme scattering events and to a certain degree the influence of 

self-gravity – play an important role in the process of the formation of interstellar clouds. Note 

that the hydrogen is not virialized as the gas is not everywhere gravitationally bound.

     The fragmentation of colliding superbubbles can be examined by studying the fractal 

dimension of the hydrogen. Although, different factors can cause problems for estimating the 

fractal dimension there are methods to calculate its value with quite good results. So though 

the parameter-area-method as well as the mass-size method – both possibilities to estimate the 

fractal dimension – are disturbed by effects like noise and opacity the fractal dimension can be 

calculated using the box-counting method.

     The results show that the fractal dimension decreases in a way like

Df ∝ −ec⋅th

c  being  a  constant  and  th  being  the  threshold  of  hydrogen  density.  The  value  of  fractal 

dimension doesn't change by a big amount though the area filled with structure decreases by a 

non-negligible factor. Finally, the behaviour of the fractal dimension for running time has been 

shown were it initially increases then drops and finally rises in its value again.
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Appendix

For the sake of completeness there now will be the figures and plots promised in the previous 

text and so more. The beginning will be the plots for the hydrogen density on the time steps of 

4.3, 4.6, 4.8, 5.2, 5.4, 5.7, 6.0, 6.4 and 7.1 Myr.

Figure I: density plot for t = 4.3 Myr, the  
axis' units are the number of data points

Figure II: density plot for t = 4.6 Myr, the  
axis' units are the number of data points

Figure III: density plot for t = 4.8 Myr, the  
axis' units are the number of data points
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Figure VI: density plot for t = 5.7 Myr, the axis' units are the number of data points

Figure IV: density plot for t = 5.2 Myr, the axis'  
units are the number of data points

Figure V: density plot for t = 5.4 Myr, the axis' units are the number of  
data points
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Figure IX: density plot for t = 7.1 Myr, the axis' units are the number of data points

Figure VIII: density plot for t = 6.4 Myr, the axis' units are the number of data points

Figure VII: density plot for t = 6.0 Myr, the axis' units are the number of data 
points
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Now there will be shown the plots with different density thresholds for different time steps. In 

addition there will be a threshold- fractal dimension-plot showing a similar behaviour for t = 

4.6, 5.4, 6.0 and 7.1 Myr.

Figure X: density plot for different thresholds at t = 4.8 Myr
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Figure XI: density plot for different thresholds at t = 5.4 Myr
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Figure XII: density plot for different thresholds at t = 6.0 Myr
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Figure XIII: density plot for different thresholds at t = 7.1 Myr
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